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Abstract 

Bitcoin is the first digital currency to see widespread adoption. Although payments are 
conducted between pseudonyms, Bitcoin cannot offer strong privacy guarantees: payment 
transactions are recorded in a public decentralized ledger, from which much information can 
be deduced. Zerocoin (Miers et al., IEEE S&P 2013) tackles some of these privacy issues by 
unlinking transactions from the payment’s origin. Yet it still reveals payment destinations and 
amounts, and is limited in functionality. 

In this paper, we construct a full-fledged ledger-based digital currency with strong privacy 
guarantees. Our results leverage recent advances in zero-knowledge Succinct Non-interactive 
ARguments of Knowledge (zk-SNARKs). 

We formulate and construct decentralized anonymous payment schemes (DAP schemes). A 
DAP scheme lets users pay each other directly and privately: the corresponding transaction 
hides the payment’s origin, destination, and amount.  We provide formal definitions and proofs 
of the construction’s security. 

We then build Zero, a practical instantiation of our DAP scheme construction. In Zero, 
transactions are less than 1 kB and take under 6 ms to verify — orders of magnitude more 
efficient than the less-anonymous Zerocoin and competitive with plain Bitcoin. 
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1 Introduction 

Bitcoin is the first digital currency to achieve widespread adoption.  The currency owes its rise 
in part to the fact that, unlike traditional e-cash schemes [Cha82, CHL05, ST99], it requires no 
trusted parties. Instead of appointing a central bank, Bitcoin uses a distributed ledger known as the 
block chain to store transactions carried out between users. Because the block chain is massively 
replicated by mutually-distrustful peers, the information it contains is public. 

While users may employ many identities (or pseudonyms) to enhance their privacy, an increasing 
body of research shows that anyone can de-anonymize Bitcoin by using information in the block 

chain [RM11, BBSU12, RS12, MPJ+13], such as the  structure  of the  transaction  graph  as well  as 
the value and dates of transactions. As a result, Bitcoin fails to offer even a modicum of the privacy 
provided by traditional payment systems, let alone the robust privacy of anonymous e-cash schemes. 

While Bitcoin is not anonymous itself, those with sufficient motivation can obfuscate their 
transaction history with the help of mixes (also known as laundries or  tumblers).  A  mix  allows 

users to entrust a set of coins to a pool operated by a central party and then, after some interval, 
retrieve different coins (with the same total value) from the pool. However, mixes suffer from 

three limitations: (i) the delay to reclaim coins must be large to allow enough coins to be mixed 
in; (ii) the mix operator can trace coins; and (iii) the mix operator may steal coins.1 For users 

with “something to hide”, these risks may be acceptable. But typical legitimate users (1) wish to 
keep their spending habits private from their peers, (2) are risk-averse and do not wish to expend 
continual effort in protecting their privacy, and (3) are often not sufficiently aware that their privacy 
has been compromised. 

To protect their privacy, users thus need an instant, risk-free, and, most importantly, automatic 
guarantee that data revealing their spending habits and account balances is not publicly accessible 
by their neighbors, co-workers, and the merchants with whom they do business. Anonymous 
transactions also ensure that the market value of a coin is independent of its history, thus ensuring 
that legitimate users’ coins remain fungible.2 

Zerocoin:    a   decentralized   mix. Miers et al. [MGGR13] proposed Zerocoin, which extends 
Bitcoin to provide strong anonymity guarantees. Like many e-cash protocols (e.g., [CHL05]), 

Zerocoin employs zero-knowledge proofs to prevent transaction graph analyses. Unlike earlier 
practical e-cash protocols, however, Zerocoin does not rely on digital signatures to validate coins, 
nor does it require a central bank to prevent double spending. Instead, Zerocoin authenticates 
coins by proving, in zero-knowledge, that they belong to a public list of valid coins (which can be 
maintained on the block chain).  Yet rather than a full-fledged anonymous currency, Zerocoin is 

a decentralized mix, where users may periodically “wash” their bitcoins via the Zerocoin protocol. 
Routine day-to-day transactions must be conducted via Bitcoin, due to reasons that we now review. 

The first reason is performance. Redeeming zerocoins requires double-discrete-logarithm proofs 
of knowledge, which have size that exceeds 45 kB and require 450 ms to verify (at the 128-bit 
security level).3 These proofs must be broadcast through the network, verified by every node, and 
permanently stored in the ledger. The entailed costs are higher, by orders of magnitude, than those 
in Bitcoin and can seriously tax a Bitcoin network operating at normal scale. 

1CoinJoin [Max13], an alternative proposal, replaces the central party of a mix with multi-signature transactions 
that involve many collaborating Bitcoin users. CoinJoin can thus only mix small volumes of coins amongst users who 

are currently online, is prone to denial-of-service attacks by third parties, and requires effort to find mixing partners. 
2While the methods we detail in this paper accomplish this, the same techniques open the door for privacy-preserving 

accountability and oversight (see Section 10). 
3These published numbers [MGGR13] actually use a mix of parameters at both 128-bit and 80-bit security for 

different components of the construction. The cost is higher if all parameters are instantiated at 128-bit security. 
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The second reason is functionality. While Zerocoin constitutes a basic e-cash scheme, it lacks 
critical features required of full-fledged anonymous payments. First, Zerocoin uses coins of fixed 
denomination: it does not support payments of exact values, nor does it provide a means to give 
change following a transaction (i.e.,  divide coins).  Second,  Zerocoin has no mechanism for one 
user to pay another one directly in “zerocoins”. And third, while Zerocoin provides anonymity 
by unlinking a payment transaction from its origin address, it does not hide the amount or other 
metadata about transactions occurring on the network. 

Our contribution.   Addressing this challenge, this work offers two main contributions. 

(1) We introduce the notion of a decentralized anonymous payment scheme, which formally captures 
the functionality and security guarantees of a full-fledged decentralized electronic currency with 
strong anonymity guarantees. We provide a construction of this primitive and prove its security 
under specific cryptographic assumptions. The construction leverages recent advances in the area of 
zero-knowledge proofs. Specifically, it uses zero-knowledge Succinct Non-interactive ARguments of 
Knowledge (zk-SNARKs) [Gro10, Lip12, BCI+13, GGPR13, PGHR13, BCG+13, Lip13, BCTV14]. 

(2) We implement the above primitive, via a system that we call Zero. Our system (at 128 bits 
of security): 

• reduces the size of transactions spending a coin to under 1 kB (an improvement of over 97.7%); 
• reduces the spend-transaction verification time to under 6 ms (an improvement of over 98.6%); 
• allows for anonymous transactions of variable amounts; 
• hides transaction amounts and the values of coins held by users; and 

• allows for payments to be made directly to a user’s fixed address (without user interaction). 

To validate our system, we measured its performance and established feasibility by conducting 

experiments in a test network of 1000 nodes (approximately 1 of the unique IPs in the Bitcoin 
network and 1 of the nodes reachable at any given time [DW13]).  This inspires confidence that 
Zero can be deployed as a fork of Bitcoin and operate at the same scale. Thus, due to its 
substantially improved functionality and performance, Zero makes it possible to entirely replace 
traditional Bitcoin payments with anonymous alternatives. 

Concurrent work. The idea of using zk-SNARKs in the Bitcoin setting was first presented by one 
of the authors at Bitcoin 2013 [Ben13]. In concurrent work, Danezis et al. [DFKP13] suggest using 
zk-SNARKs to reduce proof size and verification time in Zerocoin; see Section 9 for a comparison. 

 
1.1 zk-SNARKs 

A zk-SNARK is an efficient variant of a zero-knowledge proof of knowledge [GMR89], which we first 
informally describe via an example. Suppose Alice wishes to prove to Bob the statement “I (Alice) 
own 30 bitcoins”. A simple method for Alice to do so is to point to 30 coins on the block chain and, 
for each of them, sign a message (“hello, world”) using the secret key that controls that coin. Alas, 
this method leaks knowledge to Bob, by identifying which coins are Alice’s. A zero-knowledge proof 
of knowledge allows Alice to achieve the same goal, while revealing no information to Bob (beyond 
the fact that she knows some secret keys that control 30 coins). Crucially, such proofs can be 
obtained for any statement that can be verified to be true by use of an efficient computation involving 

auxiliary inputs such as trapdoors and passwords (such statements are called “NP statements”). 

We now sketch in more technical terms the definition of a zk-SNARK; see Section 2 for more 
details. A zk-SNARK is a non-interactive zero-knowledge proof of knowledge that is succinct, i.e., 
for which proofs are very short and easy to verify.  More precisely, let L be an NP language, and let 
C be a nondeterministic decision circuit for L on a given instance size n. A zk-SNARK can be used 
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to prove and verify membership in L, for instances of size n, as follows. After taking C as input, a 
trusted party conducts a one-time setup phase that results in two public keys: a proving key pk 
and a verification key vk. The proving key pk enables any (untrusted) prover to produce a proof π 

attesting to the fact that x ∈ L, for an instance x (of size n) of his choice. The non-interactive proof 
π is zero knowledge and a proof of knowledge. Anyone can use the verification key vk to verify the 
proof π; in particular zk-SNARK proofs are publicly verifiable: anyone can verify π, without ever 
having to interact with the prover who generated π. Succinctness requires that (for a given security 

level) π has constant size and can be verified in time that is linear in |x| (rather than linear in |C|). 

1.2 Centralized anonymous payment systems 

Before describing our new decentralized payment system, we put it in context by recalling two pre-
Bitcoin payment schemes, both of which relied on a bank, acting as a central trusted party. 

Anonymous e-cash. Chaum [Cha82] first obtained anonymous e-cash. In Chaum’s scheme, the 
minting of a coin involves both a user, Alice, and the bank: to mint a coin of a given value v, Alice 
first selects a random secret serial number sn (unknown to the bank); then, the bank, after deducting 

v from Alice’s balance, signs sn via a blind signature. Afterwards, if Alice wants to transfer her coin 
to Bob, she reveals sn to him and proves that sn was signed by the bank; during this transfer, Bob 
(or the bank) cannot deduce Alice’s identity from the revealed information. Double-spending is 
prevented because the bank will not honor a coin with a previously-seen serial number. 

Unforgeable e-cash. One problem with Chaum’s scheme is that coins can be forged if the bank’s 
secret key is compromised. Sander and Ta-Shma [ST99] addressed this, as follows. The bank 
maintains a public Merkle tree of “coin commitments”, and users periodically retrieve its root rt; in 
particular, the bank maintains no secrets. When Alice requests a coin (of unit value), she picks 
a random serial number sn and auxiliary string r, and then sends cm := CRH(snǁr) to the bank, 
where CRH is a collision-resistant hash; the bank deducts the appropriate amount from Alice’s 
balance and then records cm as a leaf in the Merkle tree.  Afterwards, to pay Bob, Alice sends him 
sn along with a zero-knowledge proof of knowledge π of the following NP statement: “there exists 
r such that CRH(snǁr) is a leaf in a Merkle tree with root rt”. In other words, Alice can convince 
Bob that sn is the serial number contained in some coin commitment in the Merkle tree; but the 
zero-knowledge property prevents Bob from learning information about which coin commitment is 
Alice’s, thereby protecting Alice’s identity. Later, Bob can “cash out” Alice’s coin by showing sn 

and π to the bank.4 

Moving   to   a   fungible   anonymous   decentralized   system.  In  this  paper,  like  [ST99],  we 
hash a coin’s serial number and use Merkle trees to compactly represent the set of minted coins. 
Unlike [ST99], we also ensure the privacy of a coin’s value and support transactions that split and 
merge coins, thus achieving (and implementing) a new kind of fully-fungible and divisible payment 
scheme.  As in Bitcoin (and in stark contrast to previous e-cash schemes),  we do not rely on a 
trusted bank. Therefore, we require a new set of definitions and protocols, designed to protect 
Alice’s anonymity while preventing her from falsely increasing her balance under the veil of her 
boosted privacy. An informal description of our payment scheme follows. 

 

1.3 Decentralized anonymous payment schemes 

We construct a decentralized anonymous payment (DAP) scheme, which is a decentralized e-cash 
scheme that allows direct anonymous payments of any amount. See Section 3 for a formal definition. 

4We omit details about how the bank can identify Alice in the event that she double spends her coin. 



6  

Here, we outline our construction in six incremental steps; the construction details are in Section 4. 
Our construction functions on top of any ledger-based base currency,  such  as  Bitcoin.  At  any 

given time, a unique valid snapshot of the currency’s ledger is available to all users. The ledger is a 
sequence of transactions and is append-only. Transactions include both the underlying currency’s 
transactions, as well as new transactions introduced by our construction. For concreteness, we focus 
the discussion below on Bitcoin (though later definitions and constructions are stated abstractly). We 
assume familiarity with Bitcoin [Nak09] and Zerocoin [MGGR13]; both are reviewed in Appendix A. 

Step  1:   user  anonymity  with  fixed-value  coins.   We  first  describe  a  simplified  construction, 
in which all coins have the same value of, e.g., 1 BTC. This construction, similar to the Zerocoin 
protocol, shows how to hide a payment’s origin. In terms of tools, we make use of zk-SNARKs 
(recalled above) and a commitment scheme. Let COMM denote a statistically-hiding non-interactive 
commitment scheme (i.e., given randomness r and message m, the commitment is c := COMMr(m); 

subsequently, c is opened by revealing r and m, and one can verify that COMMr(m) equals c). 
In the simplified construction, a new coin c is minted as follows:  a user u samples a random 

serial  number  sn and  a  trapdoor  r,  computes  a  coin  commitment  cm := COMMr(sn),  and  sets 
c := (r, sn, cm). A corresponding mint transaction txMint, containing cm (but not sn or r), is sent to 
the ledger; txMint is appended to the ledger only if u has paid 1 BTC to a backing escrow pool (e.g., 
the 1 BTC may be paid via plaintext information encoded in txMint). Mint transactions are thus 
certificates of deposit, deriving their value from the backing pool. 

Subsequently, letting CMList denote the list of all coin commitments on the ledger, u may spend 
c by posting a spend transaction txSpend that contains (i) the coin’s serial number sn; and (ii) a zk-
SNARK proof π of the NP statement “I know r such that COMMr(sn) appears in the list CMList of 
coin commitments”. Assuming that sn does not already appear on the ledger (as part of a past 
spend transaction), u can redeem the deposited amount of 1 BTC, which u can either keep, transfer 
to someone else, or mint a new coin. (If sn does already appear on the ledger, this is considered 
double spending, and the transaction is discarded.) 

User anonymity is achieved because the proof π is zero-knowledge: while sn is revealed, no 
information about r is, and finding which of the numerous commitments in CMList corresponds 
to a particular spend transaction txSpend is equivalent to inverting f (x) := COMMx(sn), which is 
assumed to be infeasible. Thus, the origin of the payment is anonymous. 

Step 2: compressing the list of  coin  commitments. In the above NP statement,  CMList is 
specified explicitly as a list of coin commitments. This naive representation severely limits scalability 
because the time and space complexity of most protocol algorithms (e.g., the proof verification 

algorithm) grow linearly with CMList. Moreover, coin commitments corresponding to already-spent 
coins cannot be dropped from CMList to reduce costs, since they cannot be identified (due to the 
same zero-knowledge property that provides anonymity). 

As in [ST99], we rely on a collision-resistant function CRH to avoid an explicit representation 
of CMList. We maintain an efficiently-updatable append-only CRH-based Merkle tree Tree(CMList) 
over the (growing) list CMList and let rt denote the root of Tree(CMList). It is well-known that rt 
can be updated to account for the insertion of new leaves with time and space proportional to just 
the tree depth. Hence, the time and space complexity is reduced from linear in the size of CMList to 
logarithmic. With this in mind, we modify the NP statement to the following one:  “I know r such 
that COMMr(sn) appears as a leaf in a CRH-based Merkle tree whose root is rt”. Compared with 
the naive data structure for CMList, this modification increases exponentially the size of CMList 
that a given zk-SNARK implementation can support. (Concretely: using Merkle trees of depth 64, 
Zero supports 264 coins.) 

Step 3:  extending coins for direct anonymous payments.  So far, the coin commitment 
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cm of a coin c is a commitment to the coin’s serial number sn. However, this creates a problem 
when transferring c to another user. Indeed, suppose that a user uA created c, and uA sends c to 

another user uB. First, since uA knows sn, the spending of c by uB is both non-anonymous (since 

uA sees when c is spent, by recognizing sn) and risky (since uA could still spend c first). Thus, uB 
must immediately spend c and mint a new coin cJ to protect himself. Second, if uA in fact wants 
to transfer to uB, e.g., 100 BTC, then doing so is both unwieldy (since it requires 100 transfers) 
and non-anonymous (since the amount of the transfer is leaked). And third, transfers in amounts 
that are not multiples of 1 BTC (the fixed value of a coin) are not supported. Thus, the simplified 
construction described is inadequate as a payment scheme. 

We address this by modifying the derivation of a coin commitment, and using pseudorandom 
functions to target payments and to derive serial numbers, as follows. We use three pseudorandom 
functions  (derived  from  a  single  one).  For  a  seed  x,  these  are  denoted  PRFaddr(·),  PRFsn(·),  and 

x x 

PRFpk(·).  We assume that PRFsn  is moreover collision-resistant. 
To provide targets for payments, we use addresses: each user u generates an address key pair 

(apk, ask), the address public key and address private key respectively. The coins of u contain the 
value apk and can be spent only with knowledge of ask. A key pair (apk, ask) is sampled by selecting 

a random seed ask and setting apk := PRFaddr(0).  A user can generate and use any number of 
address key pairs. 

Next, we redesign minting to allow for greater functionality. To mint a coin c of a desired 
value v, the user u first samples ρ, which is a secret value that determines the coin’s serial number 
as  sn  :=   PRFsn (ρ).    Then,   u  commits  to  the  tuple  (apk, v, ρ)  in  two  phases:   (a)  u  computes 

k := COMMr(apkǁρ) for a random r; and then (b) u computes cm := COMMs(vǁk) for a random s. 
The minting results in a coin c := (apk, v, ρ, r, s, cm) and a mint transaction txMint := (v, k, s, cm). 
Crucially, due to the nested commitment, anyone can verify that cm in txMint is a coin commitment 

of a coin of value v (by checking that COMMs(vǁk) equals cm) but cannot discern the owner (by 
learning the address key apk) or serial number (derived from ρ) because these are hidden in k. As 
before, txMint is accepted by the ledger only if u deposits the correct amount, in this case v BTC. 

Coins are spent using the pour operation, which takes a set of input coins, to be consumed, and 
“pours” their value into a set of fresh output coins — such that the total value of output coins equals 
the total value of the input coins. Suppose that u, with address key pair (aold, aold), wishes to consume 

pk sk 
his coin cold = (aold, vold, ρold, rold, sold, cmold) and produce two new coins cnew and cnew, with total 

pk 1 2 
value vnew + vnew = vold, respectively targeted at address public keys anew and anew . (The addresses 

1 2 pk,1 pk,2 
new 
pk,1 

new 
pk,2 may belong to u or to some other user.) The user u, for each i ∈ {1, 2}, proceeds as 

follows: (i) u samples serial number randomness ρnew; (ii) u computes knew := COMMrnew (anewǁρnew) 
for a random rnew; and (iii) u computes cmnew := COMMsnew (vnewǁknew) for a random snew. 

This yields the coins cnew := (anew , vnew, ρnew, rnew, snew, cmnew) and cnew := (anew , vnew, ρnew, 
1 pk,1 1 1 1 1 1 2 pk,2 2 2 

rnew, snew, cmnew). Next, u produces a zk-SNARK proof πPOUR for the following NP statement, which 
2 2 2 

we call POUR: 

“Given the Merkle-tree root rt, serial number snold, and coin commitments cmnew, cmnew, I 
1 2 

know coins cold, cnew, cnew, and address secret key aold such that: 
1 2 sk 

• The coins are well-formed: for cold it holds that kold = COMMrold (aoldǁρold) and cmold = 
COMMsold (voldǁkold);  and  similarly  for  cnew  and  cnew. 

• The address secret key matches the public key: aold = PRFaddr(0). pk 

• The serial number is computed correctly: snold := PRFsn old sk 

(ρold). 
• The coin commitment cmold appears as a leaf of a Merkle-tree with root rt. 

• The values add up: vnew + vnew = vold.” 

a and a 

a 
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A resulting pour transaction txPour := (rt, snold, cmnew, cmnew, πPOUR) is appended to the ledger. 
1 2 

(As before, the transaction is rejected if the serial number sn appears in a previous transaction.) 
Now suppose that u does not know, say, the address secret key anew that is associated with the 

public key anew . Then, u cannot spend cnew because he cannot provide anew as part of the witness 
pk,1 1 sk,1 of a subsequent pour operation. Furthermore, when a user who knows anew does spend cnew, the 

sk,1 1 

user u cannot track it, because he knows no information about its revealed serial number, which is 
new sn new 

sn    := PRF new (ρ    ). 
sk,1 

Also observe that txPour reveals no information about how the value of the consumed coin was 
divided among the two new fresh coins, nor which coin commitment corresponds to the consumed 
coin, nor the address public keys to which the two new fresh coins are targeted. The payment was 
conducted in full anonymity. 

More generally, a user may pour N old   0 coins into N new   0 coins. For simplicity we consider 
the case N old = N new = 2, without loss of generality. Indeed, for N old < 2, the user can mint a coin 
with value 0 and then provide it as a “null” input, and for N new < 2, the user can create (and discard) 
a new coin with value 0. For N old > 2 or N new > 2, the user can compose log N old + log N new of 
the 2-input/2-output pours. 

Step 4: sending coins.  Suppose that anew is the address public key of u1. In order to allow u1 
to actually spend the new coin cnew produced above, u must somehow send the secret values in 
cnew to u1. One way is for u to send u1 a private message, but the requisite private communication 
channel necessitates additional infrastructure or assumptions. We avoid this “out-of-band” channel 
and instead build this capability directly into our construction by leveraging the ledger as follows. 

We modify the structure of an address key pair. Each user now has a key pair (addrpk, addrsk), 

where addrpk = (apk, pkenc) and addrsk = (ask, skenc). The values (apk, ask) are generated as before. 

In addition, (pkenc, skenc) is a key pair for a key-private encryption scheme [BBDP01]. 
Then, u computes the ciphertext C1 that is the encryption of the plaintext (vnew, ρnew, rnew, snew), 

1 1 1 1 

under pknew (which is part of u1’s address public key addrnew), and includes C1 in the pour 
transaction txPour.  The user u1 can then find and decrypt this message (using his sknew ) by 

scanning the pour transactions on the public ledger. Again, note that adding C1 to txPour leaks 
neither paid amounts, nor target addresses due to the key-private property of the encryption scheme. 

(The user u does the same with cnew and includes a corresponding ciphertext C2 in txPour.) 

Step 5: public outputs.  The construction so far allows users to mint, merge, and split coins. 
But how can a user redeem one of his coins, i.e., convert it back to the base currency (Bitcoin)? 
For this, we modify the pour operation to include a public output. When spending a coin, the user 
u also specifies a nonnegative vpub and a transaction string info    0, 1  ∗.  The balance equation 
in the NP statement POUR is changed accordingly: “vnew + vnew + vpub = vold”. Thus, of the input 

1 2 

value vold, a part vpub is publicly declared, and its target is specified, somehow, by the string info. 
The string info can be used to specify the destination of these redeemed funds (e.g., a Bitcoin wallet 

public key).5 Both vpub and info are now included in the resulting pour transaction txPour. (The 
public output is optional, as the user u can set vpub = 0.) 

Step 6: non-malleability. To prevent malleability attacks on a pour transaction txPour (e.g., 
embezzlement by re-targeting the public output of the pour by modifying info), we further modify 
the NP statement POUR and use digital signatures. Specifically, during the pour operation, the user u 

(i) samples a key pair (pksig, sksig) for a one-time signature scheme; (ii) computes hSig := CRH(pksig); 

(iii) computes the two values h1 := PRFpk 
sk,1 

(hSig) and h2 := PRFpk 
sk,2 

(hSig), which act as MACs to 

 
 

5These public outputs can be considered as an “input” to a Bitcoin-style transaction, where the string info contains 
the Bitcoin output scripts. This mechanism also allows us to support Bitcoin’s public transaction fees. 
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PRFaddr 
a 

 

 
sk 

sk,i 

“tie” hSig to both address secret keys; (iv) modifies POUR to include the three values hSig, h1, h2 and 
prove that the latter two are computed correctly; and (v) uses sksig to sign every value associated 
with the pour operation, thus obtaining a signature σ, which is included, along with pksig, in txPour. 

Since the aold  are secret, and with high probability hSig changes for each pour transaction, the 

values h1, h2 are unpredictable. Moreover, the signature on the NP statement (and other values) 
binds all of these together, as argued in more detail in Appendix C and Appendix D. 

 

This ends the outline of the construction, which is summarized in part in Figure 1. We conclude by 
noting that, due to the zk-SNARK, our construction requires a one-time trusted setup of public 
parameters. The soundness of the proofs depends on this trust, though anonymity continues to 
hold even if the setup is corrupted by a malicious party. 

 

(a) Merke tree over (cm1,cm2,…) 
rt 

(b) coin 
c = ((a 

 

 
,pk 

 
 

), v, ρ, r, s, cm) 

rt = Merkle-tree root 

cm = coin commitment 
pk  enc sn = serial number 

(c) coin commitment 

cm 
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s 

(d) serial number 

sn 

v = coin value 

r, s = commitment rand. 

ρ = serial number rand. 

(apk,pkenc) = address public key 

(ask,skenc) = address secret key 
v 

COMM 
r 

 

    
        

cm
1 
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2 
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3 
cm

4 
cm

5 
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6 
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7 
cm

8 … 

   ρ 

apk 0 

 
Figure 1: (a) Illustration of the CRH-based Merkle tree over the list CMList of coin commitments. (b) A 
coin c.  (c) Illustration of the structure of a coin commitment cm.  (d) Illustration of the structure of a 
coin serial number sn. 

 
 

1.4 Zero 

We outline Zero, a concrete implementation, at 128 bits of security, of our DAP scheme 
construction; see Section 5 for details. Zero entails carefully instantiating the cryptographic 

ingredients of the construction to ensure that the zk-SNARK, the “heaviest” component, is efficient 

enough in practice. In the construction, the zk-SNARK is used to prove/verify a specific NP 

statement: POUR. While zk-SNARKs are asymptotically efficient, their concrete efficiency depends 

on the arithmetic circuit C that is used to decide the NP statement. Thus, we seek instantiations for 

which we can design a relatively small arithmetic circuit CPOUR for verifying the NP statement POUR. 
Our approach is to instantiate all of the necessary  cryptographic  ingredients  (commitment 

schemes, pseudorandom functions, and collision-resistant hashing) based on SHA256. We first design 
a hand-optimized circuit for verifying SHA256 computations (or, more precisely, its compression 
function, which suffices for our purposes).6 Then, we use this circuit to construct CPOUR, which 

verifies all the necessary checks for satisfying the NP statement CPOUR. 
This, along with judicious parameter choices, and a state-of-the-art implementation of a zk-

SNARK for arithmetic circuits [BCTV14] (see Section 2.4), results in a zk-SNARK prover 

6Alternatively, we could have opted to rely on the circuit generators [PGHR13, BCG+13, BCTV14], which support 
various classes of C programs, by writing C code expressing the POUR checks. However, as discussed later, these generic 
approaches are more expensive than our hand-optimized construction. 

CRH CRH CRH CRH 

CRH 

CRH 

 
CRH 

CRH 
PRF

sn
 

ask 

CRH CRH 



10 

 

7 

running time of a few minutes and zk-SNARK verifier running time of a few milliseconds. This 
allows the DAP scheme implementation to be practical for deployment, as our experiments show. 

Zero can be integrated into Bitcoin or forks of it (commonly referred to as “altcoins”); we later 
describe how this is done. 

 
1.5 Paper  organization 

The remainder of this paper is organized as follows. Section 2 provides background on zk-SNARKs. 
We define DAP schemes in Section 3, and our construction thereof in Section 4. Section 5 discusses 
the concrete instantiation in Zero. Section 6 describes the integration of Zero into existing ledger-
based currencies. Section 7 provides microbenchmarks for our prototype implementation, as well as 
results based on full-network simulations. Section 8 describes optimizations. We discuss concurrent 
work in Section 9 and summarize our contributions and future directions in Section 10. 

 
2 Background on zk-SNARKs 

The main cryptographic primitive used in this paper is a special kind of Succinct Non-interactive 
ARgument of Knowledge (SNARK). Concretely, we use a publicly-verifiable preprocessing zero- 
knowledge SNARK, or zk-SNARK for short. In this section we provide basic background on zk-
SNARKs, provide an informal definition, compare zk-SNARKs with the more familiar notion of 
NIZKs, and recall known constructions and implementations. 

 
2.1 Informal definition 

We informally define zk-SNARKs for arithmetic circuit satisfiability. We refer the reader to, 
e.g., [BCI+13] for a formal definition. 

For a field F, an F-arithmetic circuit takes inputs that are elements in F, and its gates output 
elements in F. We naturally associate a circuit with the function it computes. To model nonde- 

terminism  we  consider  circuits  that  have  an input  x ∈ Fn  and an  auxiliary input  a ∈ Fh,  called 
a witness.  The circuits we consider only have bilinear gates. Arithmetic circuit satisfiability is 
defined analogously to the boolean case, as follows. 

 

Definition 2.1. The arithmetic circuit satisfiability problem  of an F-arithmetic circuit C : Fn × 
Fh → Fl is  captured  by  the  relation  RC  =  {(x, a)  ∈ Fn  × Fh : C(x, a)  =  0l};  its  language  is 
LC = {x ∈ Fn : ∃ a ∈ Fh s.t. C(x, a) = 0l}. 

Given a field F, a (publicly-verifiable preprocessing) zk-SNARK for F-arithmetic circuit 
satisfiability is a triple of polynomial-time algorithms (KeyGen, Prove, Verify): 

• KeyGen(1λ, C) → (pk, vk). On input a security parameter λ (presented in unary) and an F- 
arithmetic circuit C, the key generator KeyGen probabilistically samples a proving key pk and a 
verification key  vk.  Both keys are published as public parameters and can be used, any number 

of times, to prove/verify membership in LC. 

• Prove(pk, x, a) → π. On input a proving key pk and any (x, a) ∈ RC, the prover Prove outputs a 
non-interactive proof π for the statement x ∈ LC. 
7A  gate  with  inputs  y1, . . . , ym   ∈  F is  bilinear  if  the  output  is  ⟨ →a, (1, y1, . . . , ym)⟩  · ⟨ →b, (1, y1, . . . , ym)⟩   for  some 

→a,→b ∈ Fm+1.  These  include  addition,  multiplication,  negation,  and  constant  gates. 
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• Verify(vk, x, π) → b. On input a verification key vk, an input x, and a proof π, the verifier Verify 

outputs b = 1 if he is convinced that x ∈ LC. 

A zk-SNARK satisfies the following properties. 

Completeness. For every security parameter λ, any F-arithmetic circuit C, and any (x, a) ∈ RC, 
the honest prover can convince the verifier. Namely, b = 1 with probability 1 − negl(λ) in the 
following experiment: (pk, vk) ← KeyGen(1λ, C); π ← Prove(pk, x, a); b ← Verify(vk, x, π). 

Succinctness.   An honestly-generated proof π has Oλ(1) bits and Verify(vk, x, π) runs in time Oλ(|x|). 
(Here, Oλ hides a fixed polynomial factor in λ.) 

Proof of knowledge (and soundness). If the verifier accepts a proof output by a bounded 
prover, then the prover “knows” a witness for the given instance. (In particular, soundness holds 
against bounded provers.) Namely, for every poly(λ)-size adversary A, there is a poly(λ)-size 
extractor E such that Verify(vk, x, π) = 1 and (x, a) /∈ RC with probability negl(λ) in the following 
experiment: (pk, vk) ← KeyGen(1λ, C); (x, π) ← A(pk, vk); a ← E(pk, vk). 

Perfect zero knowledge.   An honestly-generated proof is perfect zero knowledge.8  Namely, there 

is a polynomial-time simulator Sim such that for all stateful distinguishers D the following two 
probabilities are equal: 

 
. (pk, vk) ← KeyGen(1λ, C) 

 
 . (pk, vk, trap) ← Sim(1λ, C)  

Pr 
(x, a) ∈ RC 
D(π) = 1 . 

(x, a) ← D(pk, vk) 

π ← Prove(pk, x, a) 
and 

Pr 
(x, a) ∈ RC 
D(π) = 1 . 

(x, a) ← D(pk, vk) . 
π ← Sim(trap, x) 

(the probability that D(π) = 1 on an honest proof) (the probability that D(π) = 1 on a simulated proof) 
 

Remark. Both proof of knowledge and zero knowledge are essential to the use of zk-SNARKs in 
this paper. Indeed, we consider circuits C that verify assertions about cryptographic primitives 
(such as using a knowledge of SHA256 pre-image as a binding commitment). Thus it does not suffice 

to merely know that, for a given input x, a witness for x ∈ LC exists. Instead, proof of knowledge 
ensures that a witness can be efficiently found (by extracting it from the prover) whenever the 
verifier accepts a proof. As for zero knowledge, it ensures that a proof leaks no information about 

the witness, beyond the fact that x ∈ LC. 

Remark. In the security proofs (see Appendix D), we deal with provers producing a vector of inputs 
→x together with a vector of corresponding proofs →π.  In such cases, it is convenient to use an extractor 
that can extract a vector of witnesses →a containing a valid witness for each valid proof.  This “multi- 
instance” extraction follows from the “single-instance” one described above [BCCT12, BCCT13]. 

Namely, if (KeyGen, Prove, Verify) is a zk-SNARK, then for any poly(λ)-size prover adversary A 

there exists a poly(λ)-size extractor E such that 

Pr  ∃ i  s.t. Verify(vk, xi, πi) = 1 
(xi, ai) ∈/ RC . 

(pk, vk) ← KeyGen(1λ, C) 

(→x, →π) ← A(pk, vk) ≤ negl(λ)  . 

→a ← E(pk, vk) 
 

2.2 Comparison with NIZKs 

zk-SNARKs are related to a familiar cryptographic primitive: non-interactive zero-knowledge proofs 
of knowledge (NIZKs). Both zk-SNARKs and NIZKs require a one-time trusted setup of public 

8While most zk-SNARK descriptions in the literature only mention statistical zero knowledge, all zk-SNARK 
constructions can be made perfect zero knowledge by allowing for a negligible error probability in completeness. 
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parameters (proving and verification keys for zk-SNARKs, and a common reference  string  for 
NIZKs). Both provide the same guarantees of completeness, proof of knowledge, and zero knowledge. 
The difference lies in efficiency guarantees. In a NIZK, the proof length and verification time depend 

on the NP language being proved. For instance, for the language of circuit satisfiability, the proof 
length and verification time in [GOS06b, GOS06a] are linear in the circuit size. Conversely, in a zk-
SNARK, proof length depends only on the security parameter, and verification time depends 
only on the instance size (and security parameter) but not on the circuit or witness size. 

Thus, zk-SNARKs can be thought of as “succinct NIZKs”, having short proofs and fast verifica- 
tion times. Succinctness comes with a caveat: known zk-SNARK constructions rely on stronger 
assumptions than NIZKs do (see below). 

 
2.3 Known constructions and security 

There are many zk-SNARK constructions in the literature [Gro10, Lip12, BCI+13, GGPR13, 
PGHR13, BCG+13, Lip13, BCTV14]. We are interested in zk-SNARKs for arithmetic circuit 
satisfiability, and the most efficient ones for this language are based on quadratic arithmetic 
programs [GGPR13, BCI+13, PGHR13, BCG+13, BCTV14]; such constructions provide a linear- 

time KeyGen, quasilinear-time Prove, and linear-time Verify. 
Security of zk-SNARKs is based on knowledge-of-exponent assumptions and variants of Diffie– 

Hellman assumptions in bilinear groups [Gro10, BB04, Gen04]. While knowledge-of-exponent 
assumptions are fairly strong, there is evidence that such assumptions may be inherent for con- 
structing zk-SNARKs [GW11, BCCT12]. 

Remark (fully-succinct zk-SNARKs). The key generator KeyGen takes a circuit C as input. Thus, 

KeyGen’s running time is at least linear in the size of the circuit C. One could require KeyGen to not 
have to take C as input, and have its output keys work for all (polynomial-size) circuits C. In such 

a case, KeyGen’s running time would be independent of C. A zk-SNARK satisfying this stronger 
property is fully succinct. Theoretical constructions of fully-succinct zk-SNARKs are known, based 
on various cryptographic assumptions [Mic00, Val08, BCCT13]. Despite achieving essentially-optimal 
asymptotics [BFLS91, BGH+05, BCGT13b, BCGT13a, BCCT13] no implementations of  them  have 
been reported in the literature to date. 

 
2.4 zk-SNARK  implementations 

There  are  three  published  implementations  of  zk-SNARKs: (i)  Parno  et  al.  [PGHR13]  present 
an implementation of  zk-SNARKs  for  programs  having  no  data  dependencies;9  (ii)  Ben-Sasson 
et al. [BCG+13] present an implementation of zk-SNARKs for arbitrary programs (with data 
dependencies); and (iii) Ben-Sasson et al.  [BCTV14]  present  an  implementation  of  zk-SNARKs 
that supports programs that modify their own code (e.g., for runtime code generation); their 
implementation also reduces costs for programs of larger size and allows for universal key pairs. 

Each of the works above also achieves zk-SNARKs for arithmetic circuit satisfiability as  a 
stepping stone towards their respective higher-level efforts.  In this paper we are only interested in 
a zk-SNARK for arithmetic circuit satisfiability, and we rely on the implementation of [BCTV14] 
for such a zk-SNARK.10 The implementation in [BCTV14] is itself based on the protocol of Parno 
et al. [PGHR13]. We thus refer the interested reader to [PGHR13] for details of the protocol, its 

9They only support programs where array indices are restricted to be known compile-time constants; similarly, 
loop iteration counts (or at least upper bounds to these) must be known at compile time. 

10In [BCTV14], one optimization to the verifier’s runtime requires preprocessing the verification key vk; for simplicity, 
we do not use this optimization. 
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1 2 1 2 

intuition, and its proof of security; and to [BCTV14] for the implementation and its performance. 
In terms of concrete parameters, the implementation of [BCTV14] provides 128 bits of security, and 
the field F is of a 256-bit prime order p. 

 
3 Definition of a decentralized anonymous payment scheme 

We introduce the notion of a decentralized anonymous payment scheme (DAP scheme), extending 
the notion of decentralized e-cash [MGGR13]. Later, in Section 4, we provide a construction. 

 

3.1 Data structures 

We begin by describing, and giving  intuition about,  the  data  structures used  by a DAP scheme. 
The algorithms that use and produce these data structures are introduced in Section 3.2. 

Basecoin ledger. Our protocol is applied on top of a ledger-based base currency such as Bitcoin; 
for generality we refer to this base currency as Basecoin. At any given time T , all users have access 
to LT , the ledger at time T , which is a sequence of transactions. The ledger is append-only (i.e., 
T < T J implies that LT is a prefix of LT ′ ).11 The transactions in the ledger include both Basecoin 
transactions as well as two new transaction types described below. 

Public parameters. A list of public parameters pp is available to all users in the system. These 

are generated by a trusted party at the “start of time” and are used by the system’s algorithms. 

Addresses. Each user generates at least one address key pair  (addrpk, addrsk).  The public key 

addrpk is published and enables others to direct payments to the user. The secret key addrsk is used 
to receive payments sent to addrpk. A user may generate any number of address key pairs. 

Coins. A coin is a data object c, to which we associate the following. 

• A coin commitment, denoted cm(c): a string that appears on the ledger once c is minted. 
• A coin value, denoted v(c): the denomination of c, as measured in basecoins, as an integer 

between 0 and a maximum value vmax (which is a system parameter). 
• A coin serial number, denoted sn(c): a unique string associated with c, used to prevent double 

spending. 

• A coin address, denoted addrpk(c): an address public key, representing who owns c. 
Any other quantities associated with a coin c (e.g., various trapdoors) are implementation details. 

New transactions.   Besides Basecoin transactions, there are two new types of transactions. 

• Mint transactions. A mint transaction txMint is a tuple (cm, v, ∗), where cm is a coin commitment, 

v is a coin value, and ∗ denotes other (implementation-dependent) information. The transaction 
txMint records that a coin c with coin commitment cm and value v has been minted. 

• Pour transactions. A pour transaction  txPour is a tuple (rt, snold, snold, cmnew, cmnew, vpub, info, ∗), 
where rt is a root of a Merkle tree, snold, snold are two coin serial numbers, cmnew, cmnew are 

1 2 1 2 

two coin commitments, vpub is a coin value, info is an arbitrary string, and ∗ denotes other 
(implementation-dependent) information.   The transaction txPour records the pouring of two 
input (and now consumed) coins cold, cold, with respective serial numbers snold, snold, into two 

1 2 1 2 
new output coins cnew, cnew, with respective coin commitments cmnew, cmnew, as well as a public 

1 2 1 2 

output vpub (which may be zero). Furthermore, txPour also records an information string info 
(perhaps containing information on who is the recipient of vpub basecoins) and that, when this 
transaction was made, the root of the Merkle tree over coin commitments was rt (see below). 

11In reality, the Basecoin ledger (such as the one of Bitcoin) is not perfect and may incur temporary inconsistencies. 
In this respect our construction is as good as the underlying ledger. We discuss the effects of this on anonymity and 
mitigations in Section 6.4. 
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Commitments of minted coins and serial numbers of spent coins.   For any given time T , 

• CMListT denotes the list of all coin commitments appearing in mint and pour transactions in LT ; 

• SNListT denotes the list of all serial numbers appearing in pour transactions in LT . 
While both of these lists can be deduced from LT , it will be convenient to think about them as 
separate (as, in practice, these may be separately maintained for efficiency reasons; cf. Section 8.3). 

Merkle tree over commitments. For any given time  T ,  TreeT  denotes  a  Merkle  tree  over 
CMListT and rtT its root. Moreover, the function PathT (cm) gives the authentication path from a 
coin commitment cm appearing in CMListT to the root of TreeT .12 For convenience, we assume that 

LT also stores rtT ′ for all T J ≤ T (i.e., it stores all past Merkle tree roots). 

3.2 Algorithms 

A DAP scheme Π is a tuple of polynomial-time algorithms 

(Setup, CreateAddress, Mint, Pour, VerifyTransaction, Receive) 

with the following syntax and semantics. 

System setup.   The algorithm Setup generates a list of public parameters: 
 

Setup 

• INPUTS: security parameter λ 

• OUTPUTS: public parameters pp 

The algorithm Setup is executed by a trusted party. The resulting public parameters pp are published 
and made available to all parties (e.g., by embedding them into the protocol’s implementation). The 
setup is done only once; afterwards, no trusted party is needed, and no global secrets or trapdoors 
are kept. 

Creating payment addresses.  The algorithm CreateAddress generates a new address key pair: 
 

CreateAddress 

• INPUTS: public parameters pp 

• OUTPUTS: address key pair (addrpk, addrsk) 

Each user generates at least one address key pair (addrpk, addrsk) in order to receive coins. The 

public key addrpk is published, while the secret key addrsk is used to redeem coins sent to addrpk. A 
user may generate any number of address key pairs; doing so does not require any interaction. 

Minting coins.  The algorithm Mint generates a coin (of a given value) and a mint transaction: 
 

Mint 

• INPUTS: 
– public parameters pp 

– coin value v ∈ {0, 1, . . . , vmax} 
– destination address public key addrpk 

   • OUTPUTS: coin c and mint transaction txMint 

A system parameter, vmax, caps the value of any single coin. The output coin c has value v and 

coin address addrpk; the output mint transaction txMint equals (cm, v, ∗), where cm is the coin 
commitment of c. 

12While we refer to Mekle trees for simplicity, it is straightforward to extend the definition to allow other data 
structures representing sets with fast insertion and efficient proofs of membership. 
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Pouring coins. The Pour algorithm transfers value from input coins  into  new  output  coins, 
marking the input coins as consumed. Moreover, a fraction of the input value may be publicly 
revealed. Pouring allows users to subdivide coins into smaller denominations, merge coins, and 
transfer ownership of anonymous coins, or make public payments.13 

 

Pour 

• INPUTS: 
– public parameters pp 

– the Merkle root rt 
– old coins cold, cold 

1 2 
– old addresses secret keys addrold , addrold 

sk,1 sk,2 

– authentication path path1 from commitment cm(cold) to root rt, 
authentication path path2 from commitment cm(cold) to root rt 

– new values vnew, vnew 
1 2 

– new addresses public keys addrnew , addrnew 

– public value vpub 

– transaction string info 

pk,1 pk,2 

   • OUTPUTS: new coins cnew, cnew and pour transaction txPour 

Thus, the Pour algorithm takes as input two distinct input coins cold, cold, along with corresponding 
1 2 

address secret keys addrold , addrold (required to redeem the two input coins).   To ensure that 
sk,1 sk,2 

cold, cold have been previously minted, the Pour algorithm also takes as input the Merkle root rt 
1 2 

(allegedly, equal to the root of Merkle tree over all coin commitments so far), along with two 
authentication paths path1, path2 for the two coin commitments cm(cold), cm(cold). Two input values 

1 2 
vnew, vnew specify the values of two new anonymous coins cnew, cnew to be generated, and two input 

1 2 1 2 
address public keys addrnew , addrnew specify the recipients of cnew, cnew. A third value, vpub, specifies 

pk,1 pk,2 1 2 

the amount to be publicly spent (e.g., to redeem coins or pay transaction fees). The sum of output 
values vnew + vnew + vpub must be equal to the sum of the values of the input coins (and cannot 

1 2 

exceed vmax). Finally, the Pour algorithm also receives an arbitrary string info, which is bound into 
the output pour transaction txPour. 

The  Pour algorithm  outputs  two  new  coins  cnew, cnew  and  a  pour  transaction  txPour.  The 
1 2 

transaction txPour equals (rt, snold, snold, cmnew, cmnew, vpub, info, ∗), where cmnew, cmnew are the two 
coin commitments of the two output coins, and ∗ denotes other (implementation-dependent) 
information. Crucially, txPour reveals only one value, the public value vpub (which may be zero); it 
does not reveal the payment addresses or values of the old or new coins. 

Verifying transactions. The algorithm VerifyTransaction checks the validity of a transaction: 
 

VerifyTransaction 

• INPUTS: 
– public parameters pp 

– a (mint or pour) transaction tx 
– the current ledger L 

   • OUTPUTS: bit b, equals 1 iff the transaction is valid 

Both mint and pour transactions must be verified before being considered well-formed. In practice, 
transactions can be verified by the nodes in the distributed system maintaining the ledger, as well 

13We consider pours with 2 inputs and 2 outputs, for simplicity and (as discussed in Section 1.3) without loss of 
generality. 
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as by users who rely on these transactions. 

Receiving coins. The algorithm Receive scans the ledger and retrieves unspent coins paid to a 
particular user address: 

 

Receive 

• INPUTS: 
– recipient address key pair (addrpk, addrsk) 
– the current ledger L 

   • OUTPUTS: set of (unspent) received coins 

When a user with address key pair (addrpk, addrsk) wishes to receive payments sent to addrpk, he 
uses the Receive algorithm to scan the ledger. For each payment to addrpk appearing in the ledger, 
Receive outputs the corresponding coins whose serial numbers do not appear on the ledger L. Coins 
received in this way may be spent, just like minted coins, using the Pour algorithm. (We only require 
Receive to detect coins paid to addrpk via the Pour algorithm and not also detect coins minted by 
the user himself.) 

 

Next, we describe completeness (Section 3.3) and security (Section 3.4). 

 

3.3 Completeness 

Completeness of a DAP scheme requires that unspent coins can be spent. More precisely, consider a 

ledger sampler S outputting a ledger L.  If c1 and c2 are two coins whose coin commitments appear 
in (valid) transactions on L, but their serial numbers do not appear in L, then c1 and c2 can be 
spent using Pour. Namely, running Pour results in a pour transaction txPour that VerifyTransaction 
accepts, and the new coins can be received by the intended recipients (by using Receive); moreover, 
txPour correctly records the intended vpub and transaction string info. This property is formalized 
via an incompleteness experiment INCOMP. 

Definition 3.1. A DAP scheme Π = (Setup, CreateAddress, Mint, Pour, VerifyTransaction, Receive) 

is complete if no polynomial-size ledger sampler S wins INCOMP with more than negligible 
probability. (See Appendix B for details.) 

 
3.4 Security 

Security of a DAP scheme is characterized by three properties, which we call ledger indistinguishability, 
transaction non-malleability, and balance. 

Definition 3.2. A DAP scheme Π = (Setup, CreateAddress, Mint, Pour, VerifyTransaction, Receive) 
is secure if it satisfies ledger indistinguishability, transaction non-malleability, and balance. 

Below, we provide an informal overview of each property, and defer formal definitions to Appendix C. 
 

Each property is formalized as a game between an adversary A and a challenger C. In each game, 

the behavior of honest parties is realized via a DAP scheme oracle ODAP, which maintains a ledger L 
and provides an interface for executing CreateAddress, Mint, Pour and Receive algorithms for honest 

parties. To elicit behavior from honest parties, A passes a query to C, which (after sanity checks) 

proxies the query to ODAP. For each query that requests an honest party to perform an action, A 
specifies identities of previous transactions and the input values, and learns the resulting transaction, 

but not any of the secrets or trapdoors involved in producing that transaction. The oracle ODAP 

also provides an Insert query that allows A to directly add aribtrary transactions to the ledger L. 
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Ledger indistinguishability. This property captures the requirement that the ledger reveals no 
new information to the adversary beyond the publicly-revealed information (values of minted coins, 
public values, information strings, total number of transactions, etc.), even when the adversary can 
adaptively induce honest parties to perform DAP operations of his choice. That is, no bounded 

adversary A can distinguish between two ledgers L0 and L1, constructed by A using queries to two 
DAP scheme oracles, when the queries to the two oracles are publicly consistent : they have matching 
type and are identical in terms of publicly-revealed information and the information related to 

addresses controlled by A. 
Ledger indistinguishability is formalized by an experiment L-IND that proceeds as follows. 

First, a challenger samples a random bit b and initializes two DAP scheme oracles ODAP and 
ODAP, maintaining ledgers L0 and L1.  Throughout, the challenger allows A to issue queries to 

ODAP and ODAP, thus controlling the behavior of honest parties on L0 and L1.  The challenger 
provides the adversary with the view of both ledgers, but in randomized order: LLeft := Lb and 
LRight := L1−b. The adversary’s goal is to distinguish whether the view he sees corresponds to 
(LLeft, LRight) = (L0, L1), i.e. b = 0, or to (LLeft, LRight) = (L1, L0), i.e. b = 1. 

At each round of the experiment, the adversary issues queries in pairs Q, QJ of matching query 
type. If the query type is CreateAddress, then the same address is generated at both oracles. If 
it is to Mint, Pour or Receive, then Q is forwarded to L0 and QJ to L1; for Insert queries, query 
Q is forwarded to LLeft and QJ is forwarded to LRight. The adversary’s queries are restricted in the 
sense that they must maintain the public consistency of the two ledgers. For example, the public 
values for Pour queries must be the same, as well as minted amounts for Mint queries. 

At the conclusion of the experiment, A outputs a guess bJ, and wins when b = bJ. Ledger 

indistinguishability requires that A wins L-IND with probability at most negligibly greater than 1/2. 

Transaction non-malleability.   This property requires that no bounded adversary A can alter 
any of the data stored within a (valid) pour transaction txPour.  This transaction non-malleability 
prevents malicious attackers from modifying others’ transactions before they are added to the ledger 
(e.g., by re-targeting the Basecoin public output of a pour transaction). 

Transaction non-malleability is formalized by an experiment TR-NM, in which A adaptively 

interacts with a DAP scheme oracle ODAP and then outputs a pour transaction tx∗. Letting T 

denote the set of pour transactions returned by ODAP, and L denote the final ledger, A wins the 

game if there exists tx ∈ T , such that (i) tx∗ /= tx; (ii) tx∗ reveals a serial number contained in tx; 
and (iii) both tx and tx  are valid with respect to the ledger L  containing all transactions preceding 

tx on L. In other words, A wins the game if tx∗ manages to modify some previous pour transaction 
to spend the same coin in a different way. 

Transaction non-malleability requires that A wins TR-NM with only negligible probability. (Note 

that A can of course produce valid pour transactions that are unrelated to those in T ; the condition 
that tx reveals a serial number of a previously-spent coin captures non-malleability.) 

Balance. This property requires that no bounded adversary A can own more money than what 
he minted or received via payments from others. 

Balance is formalized by an experiment BAL, in which A adaptively interacts with a DAP scheme 

oracle ODAP and then outputs a set of coins Scoin. Letting ADDR be set of addresses returned by 

CreateAddress queries (i.e., addresses of “honest” users), A wins the game if the total value he 
can spend or has spent (either as coins or Basecoin public outputs) is greater than the value he 

has minted or received. That is, A wins if vUnspent + vBasecoin + vA→ADDR > vMint + vADDR→A where: 
(i) vUnspent is the total value of unspent coins in Scoin; (ii) vBasecoin is the total value of public outputs 

placed by A on the ledger; (iii) vMint is the total value of A’s mint transactions; (iv) vADDR→A is 

the total value of payments received by A from addresses in ADDR; (v) vA→ADDR is the total value 
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of payments sent by A to addresses in ADDR. 

Balance requires that A wins BAL with only negligible probability. 

4 Construction of a decentralized anonymous payment scheme 

We show how to construct a DAP scheme (introduced in Section 3) using zk-SNARKs and other 
building blocks. Later, in Section 5, we give a concrete instantiation of this construction. 

 

4.1 Cryptographic building blocks 

We first introduce notation for the standard cryptographic building blocks that we use. We 
assume familiarity with the definitions of these building blocks; for more details, see, e.g., [KL07]. 
Throughout, λ denotes the security parameter. 

Collision-resistant hashing.  We use a collision-resistant hash function CRH : {0, 1}∗ → {0, 1}O(λ). 

Pseudorandom functions.   We use a pseudorandom function family PRF = {PRFx : {0, 1}∗ → 

{0, 1}O(λ)}x where x denotes the seed. From PRFx, we derive three “non-overlapping” pseudorandom 
functions, chosen arbitrarily as PRFaddr(z) := PRFx(00ǁz) ,  PRFsn(z) := PRFx(01ǁz) ,  PRFpk(z) := 
PRFx(10ǁz). Furthermore, we assume that PRFsn is also collision resistant, in the sense that it is 
infeasible to find (x, z) =/ (xJ, zJ) such that PRFsn(z) = PRFsn(zJ). 

Statistically-hiding    commitments. We use a commitment scheme COMM where the bind- 
ing property holds computationally, while the hiding property holds statistically. It is denoted 

{COMMx : {0, 1}∗ → {0, 1}O(λ)}x where x denotes the commitment trapdoor. Namely, to reveal a 
commitment cm to a value z, it suffices to provide z  and the trapdoor x; then one can check that 
cm = COMMx(z). 

One-time strongly-unforgeable digital signatures. We use a digital signature scheme Sig = 

(Gsig, Ksig, Ssig, Vsig) that works as follows. 
• Gsig(1λ) → ppsig. Given a security parameter λ (presented in unary), Gsig samples public parameters 

ppsig for the encryption scheme. 

• Ksig(ppsig) → (pksig, sksig). Given public parameters ppsig, Ksig samples a public key and a secret 
key for a single user. 

• Ssig(sksig, m) → σ. Given a secret key sksig and a message m, Ssig signs m to obtain a signature σ. 

• Vsig(pksig, m, σ) → b. Given a public key pksig, message m, and signature σ, Vsig outputs b = 1 if 
the signature σ is valid for message m; else it outputs b = 0. 

The signature scheme Sig satisfies the security property of one-time strong unforgeability against 
chosen-message attacks (SUF-1CMA security). 

Key-private public-key encryption. We use a public-key encryption scheme Enc = (Genc, Kenc, 

Eenc, Denc) that works as follows. 

• Genc(1λ) → ppenc. Given a security parameter λ (presented in unary), Genc samples public 
parameters ppenc for the encryption scheme. 

• Kenc(ppenc) → (pkenc, skenc). Given public parameters ppenc, Kenc samples a public key and a 
secret key for a single user. 

• Eenc(pkenc, m) → c. Given a public key pkenc and a message m, Eenc encrypts m to obtain a 
ciphertext c. 

• Denc(skenc, c) → m. Given a secret key skenc and a ciphertext c, Denc decrypts c to produce a 
message m (or ⊥ if decryption fails). 

The encryption scheme Enc satisfies two security properties: (i) ciphertext indistinguishability under 
chosen-ciphertext attack (IND-CCA security); and (ii) key indistinguishability under chosen-ciphertext 
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attack (IK-CCA security). While the first property is standard, the second is less known; informally, 
IK-CCA requires that ciphertexts cannot be linked to the public key used to encrypt them, or to other 
ciphertexts encrypted with the same public key. For definitions, we refer the reader to [BBDP01]. 

 

4.2 zk-SNARKs for pouring coins 

As outlined in Section 1.3, our construction invokes a zk-SNARK for a specific NP statement, POUR, 
which we now define. We first recall the context motivating POUR. When a user u pours “old” coins 
cold, cold into new coins cnew, cnew, a corresponding pour transaction 

1 2 1 2 

txPour = (rt, snold, snold, cmnew, cmnew, vpub, info, ∗) 

is generated.   In our construction,  we need to provide evidence in “∗” that various conditions 
were respected by the pour operation. Concretely,  txPour should  demonstrate  that  (i)  u  owns 
cold, cold;  (ii) coin commitments for cold, cold appear somewhere on the ledger;  (iii) the revealed 

1 2 1 2 
serial numbers snold, snold are of cold, cold; (iv) the revealed coin commitments cmnew, cmnew are 

1 2 1 2 1 2 
of cnew, cnew; (v) balance is preserved.  Our construction achieves this by including a zk-SNARK 

1 2 

proof πPOUR for the statement POUR which checks the above invariants (as well as others needed for 
non-malleability). 

The statement POUR.  Concretely, the NP statement POUR is defined as follows. 

• Instances are of the form x = (rt, snold, snold, cmnew, cmnew, vpub, hSig, h1, h2). Thus, an instance x 
specifies a root rt for a CRH-based Merkle tree (over the list of commitments so far), the two 
serial numbers of the consumed coins, two coin commitments for the two new coins, a public 
value, and fields hSig, h1, h2 used for non-malleability. 

• Witnesses are of the form a = (path1, path2, cold, cold, addrold , addrold , cnew, cnew) where, for each 

i ∈ {1, 2}: 
1 2 sk,1 sk,2 1 2 

cold = (addrold , vold, ρold, rold, sold, cmold) , 
i pk,i i i i i i 

cnew = (addrnew, vnew, ρnew, rnew, snew, cmnew) for the same cmnew as in x, 
i pk,i i i i i i i 

addrold = (aold , pkold  )  , 
pk,i pk,i enc,i 

addrnew = (anew, pknew ) , 
pk,i pk,i enc,i 

addrold = (aold , skold )  . 
sk,i sk,i enc,i 

Thus, a witness a specifies authentication paths for the two new coin commitments, the entirety 
of coin information about both the old and new coins, and address secret keys for the old coins. 

Given a POUR instance x, a witness a is valid for x if the following holds: 

1. For each i ∈ {1, 2}: 
(a) The coin commitment cmold of cold appears on the ledger, i.e., pathi is a valid authentication 

i i 

path for leaf cmold with respect to root rt, in a CRH-based Merkle tree. 
(b) The address secret key aold matches the address public key of cold, i.e., aold = PRFaddr(0). 

sk,i i pk,i old 
sk,i 

(c) The serial number snold of cold is computed correctly, i.e., snold = PRFsn (ρold). 
i i i old i 

sk,i 

(d) The coin cold is well-formed, i.e., cmold = COMM old (COMM old (aold ǁρold)ǁvold). 

(e) The coin cnew is well-formed, i.e., cmnew = COMMsnew (COMMrnew (anewǁρnew)ǁvnew). 

(f) The address secret key aold ties hSig to hi, i.e., hi = PRFpk 
sk,i 

(iǁhSig). 

a 

a 
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1 2 1 2 1 2 1 2 2. Balance is preserved: vnew + vnew + vpub = vold + vold (with vold, vold ≥ 0 and vold + vold ≤ vmax). 

Recall that in this paper zk-SNARKs are relative to the language of arithmetic circuit satisfiability 
(see Section 2); thus, we express the checks in POUR via an arithmetic circuit, denoted CPOUR. In 
particular, the depth dtree of the Merkle tree needs to be hardcoded in CPOUR, and we thus make it a 
parameter of our construction (see below); the maximum number of supported coins is then 2dtree . 

 
4.3 Algorithm  constructions 

We proceed to describe the construction of the DAP scheme Π = (Setup, CreateAddress, Mint, Pour, 

VerifyTransaction, Receive) whose intuition was given in Section 1.3. Figure 2 gives the pseudocode 
for each one of the six algorithms in Π, in terms of the building blocks introduced in Section 4.1 
and Section 4.2. In the construction, we hardcode two quantities: the maximum value of a coin, 
vmax, and the depth of the Merkle tree, dtree. 

 
4.4 Completeness and security 

Our main theorem states that the above construction is indeed a DAP scheme. 

Theorem 4.1. The tuple Π = (Setup, CreateAddress, Mint, Pour, VerifyTransaction, Receive), as de- 
fined in Section 4.3, is a complete (cf. Definition 3.1) and secure (cf. Definition 3.2) DAP scheme. 

We provide a proof of Theorem 4.1 in Appendix D. We note that our construction can be modified 
to yield statistical (i.e., everlasting) anonymity; see the discussion in Section 8.1. 

Remark (trusted setup).  Security of Π relies on a trusted party running Setup to generate the 
public parameters (once and for all). This trust is needed for the transaction non-malleability 
and balance properties but not for ledger indistinguishability. Thus, even if a powerful espionage 
agency were to corrupt the setup, anonymity will still be maintained. Moreover, if one wishes to 

mitigate the trust requirements of this step, one can conduct the computation of Setup using secure 
multiparty computation techniques; we leave this to future work. 

Remark (use of pp). According to the definition of a DAP scheme (see Section 3), the public 
parameters pp are given as input to each one of the six algorithms; this is also how we presented 
our construction in Figure 2. However, in our construction, the public parameters pp equal a 
tuple (pkPOUR, vkPOUR, ppenc, ppsig), and not every algorithm needs every component of pp. Concretely, 
CreateAddress only needs ppenc; Mint only the security parameter λ; Pour only pkPOUR and ppsig; 

VerifyTransaction only vkPOUR; and Receive only λ. In particular, since we rely on zk-SNARKs to 
prove/verify POUR, pkPOUR is of constant, but large, size, and is only required by Pour. All other 

components of pp are of small constant size. 

Remark (checking received coins in ledger). The algorithm Receive tests whether the serial number 
of a received coin already appears on the ledger, in order not to output coins that the user has 
already received and spent by himself. Other users are, in any case, unable to spend coins addressed 
to this user. 

 
5 Zero 

We describe a concrete instantiation of a DAP scheme; this instantiation forms the basis of Zero. 
Later, in Section 6, we discuss how Zero can be integrated with existing ledger-based currencies. 
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Setup Pour 

• INPUTS: security parameter λ 
• OUTPUTS:  public parameters pp 

1. Construct CPOUR for POUR at security λ. 
λ 

• INPUTS: 
– public parameters pp 

– the Merkle root rt 
– old coins cold, cold 

2. Compute (pkPOUR, vkPOUR) := KeyGen(1 , CPOUR). 1 2 old old 
3. Compute pp := Genc(1λ). – old addresses secret keys addrsk,1, addrsk,2 

enc λ –  path path  from commitment cm(cold) to root rt, 
4. Compute ppsig := Gsig(1 ). 1 

path path 
1 

from commitment cm(cold) to root rt 
5. Set pp := (pkPOUR, vkPOUR, ppenc, ppsig). 2 new 2 new 

6. Output pp. – new values v1  , v2 
– new addresses public keys addrnew , addrnew 

 
CreateAddress 

– public value vpub 
– transaction string info 

pk,1 pk,2 

• INPUTS: public parameters pp 

• OUTPUTS:  address  key  pair  (addrpk, addrsk) 

1. Compute (pkenc, skenc) := Kenc(ppenc). 

• OUTPUTS:  new coins cnew, cnew and pour transaction txPour 

1. For each i 1, 2 : 
(a) Parse cold as (addrold , vold, ρold, rold, sold, cmold). 

2. Randomly sample a PRFaddr seed a . i pk,i     i i i i i 
sk (b) Parse addrold as (aold , skold   ). 

3. Compute apk = PRFaddr(0). sk,i sk,i enc,i 
ask (c) Compute snold := PRFsn (ρold). 

4. Set addrpk := (apk , pkenc). i 
new  new 

old i 
sk,i 

5. Set addrsk := (ask , skenc). (d) Parse addrpk,i as (apk,i, pknew ). 

6. Output (addrpk , addrsk). (e) Randomly sample a PRFsn seed ρnew. 
(f) Randomly sample two COMM trapdoors rnew, snew. 
(g) Compute knew := COMMrnew (anew ǁρnew). 

Mint i new i pk,i      i 
(h) Compute  cmi := COMMsnew (vnewǁknew). 

• INPUTS: new new 
new 

i i i new (i) Set ci := (addrpk , vi    , ρnew, rnew, snew, cmi    ). – public parameters pp ,i i i i 
(j) Set Ci := Eenc(pknew  , (vnew, ρnew, rnew, snew)). 

– coin value v ∈ {0, 1, . . . , vmax} enc,i i i i i 

– destination address public key addrpk 

• OUTPUTS: coin c and mint transaction txMint 

1. Parse addrpk as (apk, pkenc). 

2. Generate (pksig , sksig) := Ksig(ppsig). 
3. Compute hSig := CRH(pksig ). 

4. Compute h1 := PRFpk (1 hSig) and h2 := PRFpk 
sk,1 sk,2 

 
(2ǁhSig). 

sn 5.  Set x := (rt, snold, snold, cmnew, cmnew, vpub, hSig, h1, h2). 
2. Randomly sample a PRF seed ρ. 1 2 1 2 6. Set a := (path , path , cold, cold, addrold , addrold , cnew, cnew). 
3. Randomly sample two COMM trapdoors r, s. 1 2     1 2 sk,1 sk,2      1 2 

4. Compute k := COMMr(apkǁρ). 
5. Compute cm := COMMs(vǁk). 
6. Set c := (addrpk, v, ρ, r, s, cm). 
7. Set txMint := (cm, v, ∗), where ∗ := (k, s). 

7. Compute πPOUR := Prove(pkPOUR, x, a). 
8. Set m := (x, πPOUR, info, C1, C2). 
9. Compute  σ := Ssig(sksig, m). 

10. Set txPour := (rt, snold, snold, cmnew, cmnew, vpub, info, ∗), where 

8. Output c and txMint. := (pksig, h1, h2, πPOUR, C1, C2, σ). 
11. Output cnew, cnew and txPour. 

1 2 

VerifyTransaction 

• INPUTS: Receive 

– public parameters pp 

– a (mint or pour) transaction tx 

– the current ledger L 
• OUTPUTS: bit b, equals 1 iff the transaction is valid 

1. If given a mint transaction tx = txMint: 
(a) Parse txMint as (cm, v, ∗), and ∗ as (k, s). 
(b) Set cm := COMMs(v k). 

(c) Output b := 1 if cm = cm′, else output b := 0. 
 

• INPUTS: 
– public parameters pp 

– recipient address key pair (addrpk, addrsk) 
– the current ledger L 

• OUTPUTS: set of received coins 

1. Parse addrpk as (apk, pkenc). 
2. Parse addrsk as (ask, skenc). 
3. For each Pour transaction txPour on the ledger: 

(a) Parse txPour as (rt, snold, snold, cmnew, cmnew, vpub, info, ∗), 

(a) Parse txPour as (rt, snold, snold, cmnew, cmnew, vpub, info, ∗), and and ∗ as (pksig, h1, h2, πPOUR, C1, C2, σ). 

∗ as (pksig, h1, h2, πPOUR, C1, C2, σ). 
(b) If snold or snold appears on L (or snold = snold), output b := 0. 
(c) If the Merkle root rt does not appear on L, output b := 0. 
(d) Compute hSig := CRH(pk ). 

(b) For each i ∈ {1, 2}: 

i. Compute (vi, ρi, ri, si) := Denc(skenc, Ci). 
ii. If Denc’s output is not ⊥, verify that: 

• cm equals COMMs (viǁCOMMr (apkǁρi)); 
 

(e) Set x := (rt, snold, snold, cmnew, cmnew, v , h    , h , h ). • sni  := PRF    (ρi)  does  not  appear  on  L. 
(f) Set m := (x, πPOUR, info, C1, C2). 
(g) Compute b := Vsig(pksig , m, σ). 

(h) Compute b′ := Verify(vkPOUR, x, πPOUR), and output b ∧ b′. 

iii. If both checks succeed, output 
ci := (addrpk, vi, ρi, ri, si, cmnew). 

 

Figure 2: Construction of a DAP scheme using zk-SNARKs and other ingredients. 

sn 

2.  If given a pour transaction tx = txPour: 

a 
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5.1 Instantiation of building blocks 

We instantiate the DAP scheme construction from Section 4 (see Figure 2), aiming at a level of 
security of 128 bits. Doing so requires concrete choices, described next. 

CRH, PRF, COMM from  SHA256.   Let H be the SHA256 compression function, which maps 

a 512-bit input to a 256-bit output. We mostly rely on H, rather than the “full” hash, since 
this suffices for our fixed-size single-block inputs, and it simplifies the construction of CPOUR (see 

Section 5.2). We instantiate CRH, PRF, COMM via H (under suitable assumptions on H). 
First, we instantiate the collision-resistant function CRH as H(z) for z ∈ {0, 1}512; this function 

compresses “two-to-one”, so it can be used to construct binary Merkle trees. 

Next, we instantiate the pseudorandom function PRFx(z) as H(xǁz), with x ∈ {0, 1}256 as the 
seed, and z ∈ {0, 1}256 as the input.15 Thus, the derived functions are: 

PRFaddr(z) := H(xǁ00ǁz) , PRFsn(z) := H(xǁ01ǁz) , PRFpk(z) := H(xǁ10ǁz) , 
x x x 

with x ∈ {0, 1}256 and z ∈ {0, 1}254. 
As for the commitment scheme COMM, we only use it in the following pattern: 

k := COMMr(apkǁρ) , 

cm := COMMs(vǁk) . 

Due to our instantiation of PRF, apk is 256 bits. So we can set ρ also to 256 bits and r to 
256 + 128 = 384 bits; then we can compute 

k := COMMr(apkǁρ)  as   H(rǁ[H(apkǁρ)]128) . 

Above, [·]128  denotes that we are truncating the 256-bit string to 128 bits (say, by dropping least- 

significant bits, as in our implementation). Heuristically, for any string z ∈ {0, 1}128, the distribution 

induced by H(rǁz) is 2−128-close to uniform, and this forms the basis of the statistically-hiding 
property. For computing cm, we set  coin  values  to  be  64-bit  integers  (so  that,  in  particular, 

vmax = 264 − 1 in our implementation), and then compute 

cm := COMMs(vǁk)  as   H(kǁ0192ǁv)  . 

Noticeably, above we are ignoring the commitment randomness s. The reason is that we already 
know that k, being the output of a statistically-hiding commitment, can serve as randomness for 
the next commitment scheme. 

Instantiating the NP statement POUR.   The above choices imply a concrete instantiation of 
the NP statement POUR (see Section 4.2). Specifically, in our implementation, POUR checks that the 

following holds, for each i ∈ {1, 2}: 
• pathi is an authentication path for leaf cmold with respect to root rt, in a CRH-based Merkle tree; 

old 
pk,i = H(aold ǁ0256); 

• snold = H(aold ǁ01ǁ[ρold]254); 

• cmold  =  H(H(roldǁ[H(aold  ǁρold)]128)ǁ0192ǁvold); 
 

14A single exception: we still compute hSig according to the full hash SHA256, rather than its compression function, 
because there is no need for this computation to be verified by CPOUR. 

15This assumption is reminiscent of previous works analyzing the security of hash-based constructions (e.g., [Bel06]). 
However in this work we assume that a portion of the compression function is the seed for the pseudorandom function, 
rather than using the chaining variable as in [Bel06]. 

14 
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• cmnew = H(H(rnewǁ[H(anewǁρnew)]128)ǁ0192ǁvnew);  and 

• hi = H(aold ǁ10ǁbiǁ[hSig]253) where b1 := 0 and b2 := 1. 

Moreover, POUR checks that vnew + vnew + vpub = vold + vold, with vold, vold ≥ 0 and vold + vold < 264. 
Finally, as mentioned, in order for CPOUR to be well-defined, we need to fix a Merkle-tree depth 

dtree. In our implementation, we fix dtree = 64, and thus support up to 264 coins. 

Instantiating Sig. For the signature scheme Sig, we use ECDSA to retain consistency and 
compatibility with the existing bitcoind source code. However, standard ECDSA is malleable: 

both (r, s) and (r, −s) verify as valid signatures. We use a non-malleable variant, where s is restricted 
to the “lower half” of field elements. While we are not aware of a formal SUF-1CMA proof for this 
variant, its use is consistent with proposals to resolve Bitcoin transaction malleability [Wui14].16 

Instantiating Enc. For the encryption scheme Enc, we use the key-private Elliptic-Curve Integrated 
Encryption Scheme (ECIES) [Cer00]; it is one of the few standardized key-private encryption schemes 
with available implementations. 

 
5.2 Arithmetic circuit for pouring coins 

Our DAP  scheme  construction  from  Section  4  (see  Figure  2)  also  requires  zk-SNARKs  relative 
to the NP statement POUR. These are obtained by invoking a zk-SNARK for arithmetic circuit 
satisfiability (see Section 2.4) on an arithmetic circuit CPOUR, which verifies the NP statement POUR. 
In our instantiation, we rely on the implementation of [BCTV14] for the  basic  zk-SNARK  (see 
Section 2.4), and apply it to the circuit CPOUR whose construction is described next. 

 
5.2.1 An arithmetic circuit for verifying SHA256’s compression function 

The vast majority of the “verification work” in POUR is verifying computations of H, the compression 
function of SHA256 (see Section 5.1). Thus, we begin by discussing our construction of an arithmetic 
circuit CH for verifying SHA256 computations. Later, in Section 5.2.2, we discuss the construction 
of CPOUR, given the circuit CH. 

We wish to construct an arithmetic circuit CH such that, for every 256-bit digest h and 512-bit 

input z,  (h, z) ∈ RCH  if  and  only  if  h  = H(z). Naturally,  our  goal  is  to  minimize  the  size  of 
CH. Our high-level strategy is to construct CH, piece by piece, by closely following the SHA256 
official specification [Nat12]. For each subcomputation of SHA256, we use nondeterminism and field 
operations to verify the subcomputation using as few gates as possible. 

Overview of  SHA256’s  compression  function. The  primitive  unit  in  SHA256 is  a  32-bit  word. 
All subcomputations are simple word operations: three bitwise operations (and, or, xor), shift-right, 
rotate-right, and addition modulo 232. The compression function internally has a state of 8 words, 
initialized to a fixed value, and then transformed in 64 successive rounds by following the 64-word 
message schedule (deduced from the input z). The 256-bit output is the concatenation of the 8 
words of the final state. 

Representing a state.  We find that, for each word operation (except for addition modulo 232), 
it is more efficient to verify the operation when its inputs are represented as separate wires, each 
carrying a bit. Thus, CH maintains the 8-word state as 256 individual wires, and the 64-word 

message schedule as 64 · 32 wires. 
Addition modulo 32.  To verify addition modulo 232 we use techniques employed in previous 

work [PGHR13, BCG+13, BCTV14].  Given two words A and B, we compute α := 
Σ31   2i(Ai + Bi). 

 

16In practice, one might replace this ECDSA variant with an EC-Schnorr signature satisfying SUF-1CMA security 
with proper encoding of EC group elements; the performance would be similar. 
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Because F has characteristic larger than 233, there is no wrap around; thus, field addition coincides 
with integer addition. We then make a non-deterministic guess for the 33 bits αi of α (including 

carry), and enforce consistency by requiring that α = 
Σ32    2iαi.  To ensure that each αi ∈ {0, 1}, 

we use a 33-gate subcircuit computing αi(αi    1), all of which must be 0 for the subcircuit to be 
satisfiable.  Overall, verifying addition modulo 232  only requires 34 gates.  This approach extends in 
a straightforward way to summation of more than two terms. 

Verifying the SHA256 message schedule. The first 16 words Wi of the message schedule are 
the 16 words of the 512-bit input z. The remaining 48 words are computed as Wt := σ1(Wt−2) + 

Wt−7 + σ0(Wt−15) + Wt−16, where σ0(W ) := rotr7(W ) ⊕ rotr18(W ) ⊕ shr3(W ) and σ1 has the same 
structure but different rotation and shift constants. 

The rotation and shift amounts are constants, so rotates and shifts can be achieved by suitable 
wiring to previously computed bits (or the constant 0 for high-order bits in shr). Thus, since the 
XOR of 3 bits can be computed using 2 gates, both σ0 and σ1 can be computed in 64 gates. We 
then compute (or more precisely, guess and verify) the addition modulo 232 of the four terms. 

Verifying the SHA256 round function. The round function modifies the 8-word state by 
changing two of its words and then permuting the 8-word result. 

Each of the two modified words is a sum modulo 232 of (i) round-specific constant words Kt; 
(ii) message schedule words Wt; and (iii) words obtained by applying simple functions to state 

words.  Two of those functions are bitwise majority (Maj(A, B, C)i = 0 if Ai + Bi + Ci ≤ 1 else 1) 
and bitwise choice (Ch(A, B, C)i = Bi if Ai = 1, else Ci).  We verify correct computation of Maj 
using 2 gates per output bit, and Ch with 1. 

Then, instead of copying 6 unchanged state words to obtain the permuted result, we make the 
permutation implicit in the circuit’s wiring, by using output wires of previous sub-computations 
(sometimes reaching 4 round functions back) as input wires to the current sub-computation. 

Performance. Overall, we obtain an arithmetic circuit CH for verifying SHA256’s compression 
function with less than 30 000 arithmetic gates. See Figure 3 for a breakdown of gate counts. 

 

Gate count for CH 

Message schedule 8032 
All rounds 19 584 

1 round (of 64) 306 
Finalize 288 

Total 27 904 

Figure 3: Size of circuit CH for SHA256’s compression function. 

 
Comparison with generic approaches. We constructed the circuit CH from scratch. We could 
have instead opted for more generic approaches: implement SHA256’s compression function in 
a higher-level language, and use a circuit generator to obtain a corresponding circuit. However, 
generic approaches are significantly more expensive for our application, as we now explain. 

Starting from the SHA256 implementation in PolarSSL (a popular cryptographic library) [Pol13], 

it is fairly straightforward to write a C program for computing H. We wrote such a program, and 
gave it as input to the circuit generator of [PGHR13]. The output circuit had 58160 gates, more 
than twice larger than our hand-optimized circuit. 

Alternatively, we also compiled the same C program to TinyRAM, which is the architecture 
supported in [BCG+13]; we obtained a 5371-instruction assembly code that takes 5704 cycles to 
execute on TinyRAM. We could then invoke the circuit generator in [BCG+13] when given this 

TinyRAM program and time bound. However, each TinyRAM cycle costs ≈ 1000 gates, so the 

resulting circuit would have at least 5.7 · 106 gates, i.e., over 190 times larger than our circuit. A 
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similar computation holds for the circuit generator in [BCTV14], which supports an even more 
flexible architecture. 

Thus, overall, we are indeed much better off constructing CH from scratch. Of course, this is 
not surprising, because a SHA256 computation is almost a “circuit computation”: it does not make 
use of complex program flow, accesses to memory, and so on. Thus, relying on machinery developed 
to support much richer classes of programs does not pay off. 

 
5.2.2 Arithmetic  circuit  for  POUR 

The NP statement POUR requires verifying membership in a Merkle tree based on H, a few additional 
invocations of H, and integer addition and comparison. We construct the circuit CPOUR for POUR by 
combining various subcircuits verifying each of these. There remains to to discuss the subcircuits 
for verifying membership in a Merkle tree (using the aforementioned subcircuit CH for verifying 
invocations of H), and integer addition and comparison. 

Merkle tree membership. We need to construct an arithmetic circuit that, given a root rt, 
authentication path path, and coin commitment cm, is satisfied if and only if path is a valid 
authentication path for the leaf cm with respect to the root rt. The authentication path path 

includes, for each layer i, an auxiliary hash value hi and a bit ri specifying whether hi was the left 
(ri = 0) or the right (ri = 1) child of the parent node. We then check membership in the Merkle 
tree by verifying invocations of H, bottom-up. Namely, for d = 64, we set kd−1 = cm; then, for each 
i = d − 1, . . . , 1, we set Bi = hiǁki if ri = 0 else kiǁhi, and compute ki−1 = H(Bi). Finally we check 
that the root k0 matches the given root rt. 

Integer addition.    We need to construct an arithmetic circuit that, given 64-bit integers A, B, C 
(presented as binary strings), is satisfied if and only if C = A + B over the integers. Again relying 
on the fact that F’s characteristic is sufficiently large, we do so by checking that 

Σ63  2ici = Σ63 i i=0 

i=0 2 (bi + ai) over F; this is enough, because there is no wrap around. 

Integer comparison.    We need to construct an arithmetic circuit that, given two 64-bit integers 
A, B (represented in binary), is satisfied if and only if A + B fits in 64 bits (i.e. A + B < 264). We 

do so by checking that 
Σ63    2i(bi + ai) = 

Σ63    ci  for some  ci ∈ {0, 1}.  Indeed, if A + B < 264  then 
it suffices to take ci as the binary representation of A + B. However, if A + B ≥ 264 then no choice 

of ci can satisfy the constraint as 
Σ63    ci ≤ 264 − 1. Overall, this requires 65 gates (1 gate for the 

equality check, and 64 gates for ensuring that c0, . . . , c63 are boolean). 

Overall circuit sizes. See Figure 4 for the size of CPOUR. More than 99% of the gates are devoted 

to verifying invocations of H. 
 

Gate count for CPOUR 

Ensure cmold is in Merkle tree 
1 

(1 layer out of 64) 
Ensure cmold is in Merkle tree 

2 

(1 layer out of 64) 
Check computation of snold, snold 

1 2 
Check computation of aold  , aold 

pk,1      pk,2 
Check computation of cmold, cmold, cmnew, cmnew 

1 2 1 2 

Check computation of h1, h2 

Ensure that vnew + vnew + vpub = vold + vold 
1 2 1 2 

Ensure that vold + vold < 264 
1 2 

Miscellaneous 

1 802 304 
(28 161) 

1 802 304 
(28 161) 

2 × 27 904 

2 × 27 904 

4 × 83 712 
2 × 27 904 

1 

65 
2384 

Total 4 109 330 

Figure 4: Size of the circuit CPOUR, which verifies the statement POUR. 
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6 Integration with existing ledger-based currencies 

Zero can be deployed atop any ledger (even one maintained by a central bank). Here, we briefly 
detail integration with the Bitcoin protocol. Unless explicitly stated otherwise, in the following 
section when referring to Bitcoin, and its unit of account bitcoin (plural bitcoins), we mean the 
underlying protocol and software, not the currency system. (The discussion holds, with little or no 
modification, for many forks of Bitcoin, also known as “altcoins”, such as Litecoin.) 

By introducing new transaction types and payment semantics, Zero breaks compatibility with 
the Bitcoin network. While Zero could be integrated into Bitcoin (the actual currency and its 
supporting software) via a “flag day” where a super-majority of Bitcoin miners simultaneously 
adopt the new software, we neither expect nor advise such integration in the near future and suggest 
using Zero in a separate altcoin. 

Integrating Zero into Bitcoin consists of adding a new transaction type, Zero transactions, and 
modifying the protocol and software to invoke Zero’s DAP interface to create and verify these 
transactions. There are at least two possible approaches to this integration. The first approach 
replaces all bitcoins with zerocoins, making all transactions anonymous at the cost of losing any 
additional Bitcoin functionality provided by, e.g., the Bitcoin scripting language (see Section 6.1). 
The second approach maintains this functionality, adding a parallel Zero currency, zerocoin, which 
can be converted to and from bitcoin at a one-to-one rate (see Section 6.2). Options for protocol-
level modifications for the later approach are discussed in Section 6.3; the former can be readily 
inferred. In Section 6.4 we discuss anonymizing the network layer of Bitcoin and anonymity 
safeguards. 

 

6.1 Integration by replacing the base currency 

One approach is to alter the underlying system so that all monetary transactions are done using 
Zero, i.e., by invoking the DAP interface and writing/reading the associated transactions in the 
distributed ledger. 

As seen in Section 3, this suffices to offer the core functionality of payments, minting, merging, 
splitting, etc., while assuring users that all transactions using this currency are anonymous. However, 
this has several drawbacks: (1) All pour transactions incur the cost of generating a zk-SNARK proof. 
(2) If Bitcoin supports additional features, such as a scripting language for specifying conditions for 
claiming bitcoins (as in Bitcoin), then these features are lost.17 (3) Bitcoin allows the flexibility of 
spending unconfirmed transactions; instead, with a Zero-only Bitcoin, this flexibility is lost: 
transactions must be confirmed before they can be spent. (And this imposes a minimal delay 
between receiving funds and spending them.) 

 

6.2 Integration by hybrid currency 

A different approach is to extend Bitcoin with a parallel, anonymized currency of “zerocoins”, 
existing alongside bitcoins, using the same ledger, and with the ability to convert freely between 
the two. The behavior and functionality of regular bitcoins is unaltered; in particular, they may 
support functionality such as scripting. 

In this approach, the Bitcoin ledger consists of Bitcoin-style transactions, containing inputs and 
outputs [Nak09]. Each input is either a pointer to an output of a previous transaction (as in plain 
Bitcoin), or a Zero pour transaction (which contributes its public value, vpub, of bitcoins to this 
transaction). Outputs are either an amount and destination public address/script (as in plain 

17However, in principle POUR could be extended to include a scripting language interpreter. 
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Bitcoin), or a Zero mint transaction (which consumes the input bitcoins to produce zerocoins). The 
usual invariant over bitcoins is maintained and checked in plain view: the sum of bitcoin inputs 
(including pours’ vpub) must be at least the sum of bitcoin outputs (including mints’ v), and any 
difference is offered as a transaction fee. However, the accounting for zerocoins consumed and 
produced is done separately and implicitly by the DAP scheme. 

The life cycle of a zerocoin is as follows. 

Creating new zerocoins. A mint transaction consumes v worth of bitcoins as inputs, and outputs 
coin commitment worth v zerocoins. The v bitcoins are effectively destroyed, in exchange for the 
newly-minted zerocoins. 

Spending zerocoins. Zerocoins can then be transferred, split, and merged into other zerocoins 
arbitrarily, via pour transactions which, instead of explicit inputs, include zero-knowledge proofs 
that such inputs exist. Pour transactions may optionally reveal a non-zero public output vpub. This 
is either left unclaimed as a transaction fee,18  placed into a standard Bitcoin transaction output 
(e.g., one paying to a public key) or consumed by a mint transaction. Thus, vpub bitcoins are created 
ex nihilo (similarly to how coinbase transactions produce bitcoin outputs as mining reward), in 
exchange for destroying that amount of zerocoins. The Bitcoin outputs must be included in the 

transaction string info, which is included as part of a pour transaction; transaction non-malleability 
ensures that all this information is bound together. 

Spending multiple zerocoins. To allow for pours to span more than two input and output coins, 
txPour structures may be chained together within one transaction by marking some output coin 
commitments as intermediates and having subsequent pours in the same transaction constructed 
relative to an ephemeral Merkle tree consisting of only the intermediates commitments. For example, 
a transaction might accept four input coins, with the first two Pour operations combining two 

of the inputs to produce an intermediate commitment each and a final Pour combining the two 
intermediate commitments into a final output new coin. Since the intermediate results are consumed 
instantly within the transaction, they need not be recorded in the global Merkle tree or have their 
serial numbers marked as spent. 

Transaction fees. Collecting transaction fees is done as usual, via a coinbase transaction added 
to each block, which pays as mining reward the difference between the total inputs (bitcoin and 
pours’ vpub) and total outputs (bitcoin and mints’ v) in this block. Payment is either in bitcoins or 

in newly-minted zerocoins (via a Mint). 

Validation and block generation.    All transactions are verified via VerifyTransaction when they 
are received by a node. Any plain Bitcoin inputs and outputs are processed as usual, and any Zero 

inputs and outputs are checked using VerifyTransaction with the entire Bitcoin transaction fed in as 

info for authentication. Once these transactions are assembled into a candidate block, each transaction 
needs to be verified again to ensure its serial number has not become spent or its Merkle root invalid. 
If these checks pass, the set of new coin commitments and spent serial numbers output by the 
included transactions are added to the global sets, and the new Merkle root and a digest of the 
serial number list is stored in the new block.19 Embedding this data simplifies statekeeping and 
allows nodes to readily verify they have the correct coin list and serial number list. Upon receiving 
a candidate block, nodes validate the block is formed correctly with respect to the above procedure. 

Receiving payments.   In order to receive payments to an address, users may scan the block chain 
by running the Receive on every pour transaction. Alternatively they may receive coin information 

18Since transaction fees may potentially be claimed by any node in the network, they represent the sole zerocoin 
output that cannot be hidden from public view even in a Zero-only system. 

19This can be stored in the coinbase transaction, as certain other data currently is, or in a new field in the block 
header. 
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via some out-of-band mechanism (e.g., via encrypted email). The former process is nearly identical 
to the one proposed for “stealth addresses” for Bitcoin. In the worst case, scanning the block chain 
requires a trial decryption of every ciphertext C. We expect many scenarios to provide explicit 
notification, e.g., in interactive purchases where a communication channel already exists from the 
payer to the payee. (Implementations may opt to drop the receive mechanism entirely, and require 
out-of-band notification, in order to avoid storing the ciphertexts in the block chain.) 

 
6.3 Extending the Bitcoin protocol to support the combined semantics 

While the section above describes the life-cycle of a zerocoin and semantics of the system, there 
remains the question of how transactions acquire the above necessary semantics. Two implementation 
approaches are possible, with different engineering tradeoffs. 

The first approach is to extend the protocol and its implementation with hard-coded validation 
of Zero transactions, reading them from new, designated fields in transactions and running 

VerifyTransaction. In this case the zk-SNARK itself effectively replaces the scripting language for 
Zero transactions. 

The second approach is to extend Bitcoin’s scripting language by adding  an  opcode  that 
invokes VerifyTransaction, with the requisite arguments embeded alongside the opcode script. Such 
transactions must be exempt from the requirement they reference an input (as they are Zero 
transactions are self-contained), and, like coinbase transactions, be able to create bitcoins ex nihilo 
(to account for vpub). Moreover, while VerifyTransaction is run at the standard point in the Bitcoin 
transaction processing flow for evaluating scripts, the coin commitments and spent serial numbers 
are not actually added to CMList (resp., SNList) until their containing block is accepted (i.e., merely 
verifying a transaction does not have side effects). 

 
6.4 Additional anonymity considerations 

Zero only anonymizes the transaction ledger. Network traffic used to announce transactions, 
retrieve blocks, and contact merchants still leaks identifying information (e.g., IP addresses). Thus 
users need some anonymity network to safely use Zero. The most obvious way to do this is via 
Tor [DMS04]. Given that Zero transactions are not low latency themselves, Mixnets (e.g., Mixminion 
[DDM03]) are also a viable way to add anonymity (and one that, unlike Tor, is not as vulnerable to 
traffic analysis). Using mixnets that provide email-like functionality has the added benefit of 

providing an out-of-band notification mechanism that can replace Receive. 
Additionally, although in theory all users have a single view of the block chain, a powerful 

attacker could potentially fabricate an additional block solely for a targeted user.  Spending any 
coins with respect to the updated Merkle tree in this “poison-pill” block will uniquely identify the 
targeted user. To mitigate such attacks, users should check with trusted peers their view of the 
block chain and, for sensitive transactions, only spend coins relative to blocks further back in the 
ledger (since creating the illusion for multiple blocks is far harder). 

 
7 Experiments 

To measure the performance of Zero, we ran several experiments. First, we benchmarked the 

performance of the zk-SNARK for the NP statement POUR (Section 7.1) and of the six DAP scheme 
algorithms (Section 7.2). Second, we studied the impact of a higher block verification time via a 
simulation of a Bitcoin network (Section 7.3). 
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7.1 Performance of zk-SNARKs for pouring coins 

Our zk-SNARK for the NP statement POUR is obtained by constructing an arithmetic circuit CPOUR 

for verifying POUR, and then invoking the generic implementation of zk-SNARK for arithmetic 
circuit satisfiability of [BCTV14] (see Section 2.4). The arithmetic circuit CPOUR is built from scratch 
and hand-optimized to exploit nondeterministic verification and the large field characteristic (see 
Section 5.2) . 

Figure 5 reports performance characteristics of the resulting zk-SNARK for POUR. This includes 
three settings: single-thread performance on a laptop machine; and single-thread and multi-thread 
performance on a desktop machine. (The time measurements are the average of 10 runs, with 
standard deviation under 2.5%.) For instance, with single-thread code on the laptop machine, we 
obtain that: 
• Key generation takes 7 min 48 s, and results in a proving key pkPOUR of 896 MiB and a verification 

key vkPOUR of 749 B. This is performed only once, as part of the Setup algorithm. 

• Producing a proof πPOUR requires about 3 minutes; proofs have a constant size of 288 B. Proof 
generation is a subroutine of the Pour algorithm, and the resulting proof is included in the 
corresponding pour transaction. 

• A proof πPOUR can be verified in only 8.5 ms. Proof verification is a subroutine of the VerifyTransaction 
algorithm, when it is given as input a pour transaction to verify. 

 

 Intel Intel 
Core i7-2620M Core i7-4770 

@ 2.70GHz @ 3.40GHz 
12GB of RAM 16GB of RAM 

1 thread 1 thread 4 threads 

KeyGen Time 7 min 48 s 5 min 11 s 1 min 47 s 
Proving key 896 MiB 

Verification key 749 B 

Prove Time 2 min 55 s 1 min 59 s 46 s 

Proof 288 B 

Verify Time 8.5 ms 5.4 ms 

Figure 5: Performance of our zk-SNARK for the NP statement POUR. (N = 10, σ ≤ 2.5%) 

 

7.2 Performance of Zero algorithms 

In Figure 6 we report performance characteristics for each of the six DAP scheme algorithms in 
our implementation (single-thread on our desktop machine). For VerifyTransaction, we separately 
report the cost of verifying mint and pour transactions and, in the latter case, we exclude the cost 
of scanning L (e.g., to check if a serial number is duplicate);20 for the case of Receive, we report the 
cost to process a given pour transaction in L. 

We obtain that: 

• Setup takes about 5 minutes to run; its running time is dominated by the running time of KeyGen 
on CPOUR. (Either way, Setup is run only once.) The size of the resulting public parameters pp is 
dominated by the size of pkPOUR. 

• CreateAddress takes 326.0 ms to run. The size of the resulting address key pair is just a few 
hundred bytes. 

20Naturally, if SNList has 264 serial numbers (the maximum possible in our implementation), then scanning is very 
expensive! However, we do not expect that a system like Zero will grow to 264 transactions. Still, such a system may 
grow to the point that scanning SNList is too expensive. We detail possible mitigations to this in Section 8.3.2. 
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• Mint takes 23 µs to run. It results in a coin of size 463 B and mint transaction of size 72 B. 
• Pour takes about 2 minutes to run. Besides Setup, it is the only “expensive” algorithm to run; as 

expected, its running time is dominated by the running time of Prove. For a transaction string 

info, it results in (two new coins and) a pour transaction of size 996 B + |info|. 
• VerifyTransaction takes 8.3 µs to verify a mint transaction and 5.7 ms to verify a pour transaction; 

the latter’s time is dominated by that of Verify, which checks the zk-SNARK proof πPOUR. 

• Receive takes 1.6 ms per pour transaction. 
Note that the above numbers do not include the costs of maintaining the Merkle tree because 
doing so is not the responsibility of the DAP scheme algorithms.  Nevertheless, these additional 
costs are not large: (i) each update of the root of the CRH-based Merkle tree only requires dtree 

invocations of CRH, and (ii) an authentication path consists of only dtree digests of CRH.  In our 

implementation, where CRH = H (the SHA256 compression function) and dtree = 64, each update 
requires 64 invocations of H and an authentication path requires 64 · 32 B = 2 KiB of storage. 

Remark. If one does not want to rely on the ledger to communicate coins, via the ciphertexts 
C1, C2, and instead rely instead on some out-of-band mechanism (e.g., encrypted email), then the 

Receive algorithm is not needed, and moreover, many of the aforementioned sizes decrease because 
some pieces of data are not needed anymore; we denoted these pieces of data with “*” in Figure 6. 
(E.g., the size of an address key pair is reduced to only 64 B, and the size of a coin to only 120 B.) 

 
 

7.3 Large-scale network simulation 

Because Bitcoin mining typically takes place on dedicated GPUs or ASICs, the CPU resources to 
execute the DAP scheme algorithms are often of minimal consequence to network performance. 

There is one potential exception to this rule: the VerifyTransaction algorithm must be run by all of 
the network nodes in the course of routine transaction validation. The time it takes to perform this 
verification may have significant impact on network performance. 

In the Zero implementation (as in Bitcoin), every Zero transaction is verified at each hop as it is 
forwarded though the network and, potentially, again when blocks containing the transaction are 
verified. Verifying a block consists of checking the proof of work and validating the contained 
transactions. Thus Zero transactions may take longer to spread though the network and blocks 
containing Zero transactions may take longer to verify. While we are concerned with the first 
issue, the potential impact of the second issue is cause for greater concern. This is because Zero 
transactions cannot be spent until they make it onto the ledger. 

Because blocks are also verified at each hop before they are forwarded through the network, 
delays in block verification slow down the propagation of new blocks through the network. This 
causes nodes to waste CPU-cycles mining on out-of-date blocks, reducing the computational power 
of the network and making it easier to mount a “51% attack” (dishonest majority of miners) on the 
distributed ledger. 

It is a priori unclear whether this potential issue is a real concern. Bitcoin caches transaction 
verifications, so a transaction that was already verified when it propagated through the network need 
not be verified again when it is seen in a block.  The unknown is what percentage of transactions in 
a block are actually in any given node’s cache. We thus conduct a simulation of the Bitcoin network 
to investigate both the time it takes Zero transactions to make it onto the ledger and establish the 
effects of Zero transactions on block verification and propagation. We find that Zero transactions 
can be spent reasonably quickly and that the effects of increased block validation time are minimal. 
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 Intel 
Core i7-4770 
@ 3.40GHz 

16GB of RAM 

1 thread 

Setup Time 5 min 17 s 

Size of pp 
size of pkPOUR 

size of vkPOUR 

٨ size of ppenc 

size of ppsig 

896 MiB 
896 MiB 

749 B 

0 B 

0 B 

CreateAddress Time 326.0 ms 

Size of addrpk 
size of apk 

٨ size of pkenc 

343 B 
32 B 

311 B 

Size of addrsk 
size of ask 

٨ size of skenc 

319 B 
32 B 

287 B 

Mint Time 23 µs 

Size of coin c 
size of addrpk 

size of v 

size of ρ 

size of r 

size of s 

size of cm 

463 B 
343 B 

8 B 

32 B 

48 B 

0 B 

32 B 

Size of txMint 
size of cm 

size of v 

size of k 

size of s 

72 B 
32 B 

8 B 

32 B 

0 B 

Pour Time 2 min 2.01 s 

Size of txPour 
size of rt 
size of snold, snold 

1 2 
size of cmnew, cmnew 

1 2 

size of vpub 

size of info 

size of pksig 

size of h1, h2 

size of πPOUR 

٨ size of C1, C2 

size of σ 

996 B + |info| 
32 B 

2 × 32 B 

2 × 32 B 

8 B 

|info| 

66 B 

2 × 32 B 

288 B 

2 × 173 B 

64 B 

VerifyTransaction Time for mint tx 8.3 µs 

Time for pour tx (excludes L scan) 5.7 ms 

Receive Time (per pour tx) 1.6 ms 
 

Figure 6: Performance of Zero algorithms. Above, we report the sizes of ppenc and ppsig as 0 B, because these 
parameters are “hardcoded” in the libraries we rely on for Enc and Sig. (N = 10 with σ ≤ 2.5% for all 
except that, due to variability at short timescales, σ(Mint) ≤ 3.3 µs and σ(VerifyTransaction) ≤ 1.9 µs) 

 
Simulation design. Because Zero requires breaking changes to the  Bitcoin  protocol,  we cannot 
test our protocol in the live Bitcoin network or even in the dedicated testnet. We must run our own 
private testnet. For efficiency and cost reasons, we would like to run as many Bitcoin nodes as 
possible on the least amount of hardware. This raises two issues. First, reducing the proof of work 
to practical levels while still preserving a realistic rate of new blocks is difficult (especially on 
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virtualized hardware with variable performance). Second, the overhead of zk-SNARK verification 
prevents us from running many Bitcoin nodes on one virtualized server. 

The frequency of new blocks can be modeled as a Poisson process with a mean of Λblock seconds.21 
To generate blocks stochastically, we modify bitcoind to fix its block difficulty at a trivial level 22 
and run a Poisson process, on the simulation control server, which trivially mines a block on a 
randomly selected node. This preserves the distribution of blocks, without the computational 
overhead of a real proof of work. Another Poisson process triggering mechanism, with a different 
mean Λtx, introduces new transactions at random network nodes. 

To differentiate which transactions represent normal Bitcoin expenditures versus which contain 
Zero pour transactions, simulated Zero transactions pay a unique amount of bitcoins (we set this 
value arbitrarily at 7 BTC). If a transaction’s output matches this preset value, and it is not in 
verification cache, then our modified Bitcoin client inserts a 10 ms delay simulating the runtime of 

VerifyTransaction.23 Otherwise transactions are processed as specified by the Bitcoin protocol. We 
vary the amount of simulated Zero traffic by varying the number of transactions with this particular 
output amount. This minimizes code changes and estimates only the generic impact of verification 
delays and not of any specific implementation choice. 

Methodology. Recent research [DW13] suggests that the Bitcoin network contains 16,000 distinct 
nodes though most are likely no longer participating: approximately 3,500 are reachable at any 
given time. Each node has an average of 32 open connections to randomly selected peers. As of 
November 2013, the peak observed transaction rate for Bitcoin is slightly under one transaction per 
second [Lee13]. 

In our simulation, we use a 1000-node network in which each node has an average of 32 peers, 
transactions are generated with a mean of Λtx = 1 s, a duration of 1 hour, and a variable percentage 
ϵ of Zero traffic. To allow for faster experiments, instead of generating a block every 10 minutes as in 
Bitcoin, we create blocks at an average of every Λblock = 150 s (as in Litecoin,  a popular altcoin). 

We run our simulation for different traffic mixes, where ϵ indicates the percentage of Zero 

transactions and ϵ ∈ {0%, 25%, 50%, 75%, 100%}. Each simulation is run on 200 Amazon EC2 
general-purpose m1.medium instances, in one region on a 10.10./16 private network. On each 
instance, we deploy 5 instances of bitcoind.24 

Results. Transactions are triggered by a blocking function call on the simulation control node 
that must connect to a random node and wait for it to complete sending a transaction. Because 
the Poisson process modeling transactions generates delays between such calls and not between the 
exact points when the node actuals sends the transactions, the actual transaction rate is skewed. 
In our experiments the real transaction rate shifts away from our target of one per second to an 
average of one every 1.4 seconds. 

In Figure 7 we plot three metrics for ϵ ∈ {0%, 25%, 50%, 75%, 100%}. Each is the average 
defined over the data from the entire run of the simulation for a given ϵ (i.e., they include multiple 
transactions and blocks).25 Transaction latency is the interval between a transaction’s creation and 

21Since computational power is added to the Bitcoin network faster than the 2-week difficulty adjustment period, 
the frequency of block generation is actually skewed. As our experiments run for at most an hour, we ignore this. 

22These code modifications have been rendered moot by the subsequent inclusion of a “regtest” mode in Bitcoin 0.9  
that allows for precisely this type of behavior and block generation on command. At the time of our experiments, this  
feature was not available in a stable release. Future work should use this feature. 

23We used a generous delay of 10 ms (higher than the time reported in Figure 6) to leave room for machines slower 
than our desktop machine. 

24Higher densities of nodes per VM resulted in issues initializing all of the bitcoind instances on boot. 
25Because our simulated Bitcoin nodes ran on shared EC2 instances, they were subject to variable external load, 



33  

last node 
every node 

its inclusion in a block. Block propagation time comes in two flavors: (1) the average time for a new 
block to reach a node computed over the times for all nodes, and (2) the same average computed 
over only the last node to see the block. 

Block verification time is the average time, over all nodes, required to verify a block. If verification 
caching was not effective, we would expect to see a marked increase in both block verification time 
and propagation time. Since blocks occur on average every 150 s, and we expect approximately 

one transaction each second, we should see 150 × 10 ms = 1500 ms of delay if all transactions were 
non-cached Zero transactions. Instead, we see worst case 80 ms and conclude caching is effective. This 
results in a negligible effect on block propagation (likely because network operations dominate). The 

time needed for a transaction to be confirmed, and hence spendable, is roughly 190 s. For slower 
block generation rates (e.g., Bitcoin’s block every 10 minutes) this should mean users must 

wait only one block before spending received transactions. 
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Figure 7: The average values of the three metrics we study, as a function of g, the percentage of transactions 
that are Zero transactions. Note that, in (a), latency is undefined when g = 0 and hence omitted. 

 
 
 

8 Optimizations and extensions 

We outline several optimizations and extensions to Zero: everlasting anonymity (Section 8.1), faster 
block propagation (Section 8.2), and improved storage requirements (Section 8.3). 

 
8.1 Everlasting anonymity 

Since transactions may persist virtually forever on the ledger, users may wish to ensure the 
anonymity of their transactions also lasts forever, even if particular primitives are eventually broken 
(by cryptanalytic breakthrough, engineering progress, or quantum computers). As we now explain, 
the DAP scheme construction described in Section 4 is only computationally private, but can be 
modified to achieve everlasting anonymity. 

Recall that every Pour operation publishes a pour transaction txPour = (rt, snold, snold, cmnew, cmnew, 
1 2 1 2 

vpub, info, ∗), where ∗ = (pksig, h1, h2, πPOUR, C1, C2, σ) and Ci = Eenc(pknew , (vnew, ρnew, rnew, snew)). 

Observe that: 
enc,i i i i i 

 
 

limiting the benchmark precision. Still, it clearly demonstrates that the mild additional delay does not cause 
catastrophic network effects. 
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• Since hSig = CRH(pksig) and hi = PRF old (hSig), an unbounded adversary A can iterate over all x 

until PRFpk(hSig) equals hi; with overwhelming probability, there is only one such x, in which 

case it equals aold . Thus, A learns aold , and hence aold := PRFaddr(0). This identifies the sender. 
 

• An unbounded  A can  also  decrypt  Ci,  so  to  learn  (vnew, ρnew, rnew, snew);  then,  A can  try  all 

possible x until COMMsnew (vnewǁCOMMrnew (PRFaddr(0)ǁρnew)) equals cmnew; with overwhelming 
probability, there is only one such x, in which case it equals anew. This identifies the recipient. 

The above attacks can be prevented as follows. First, every sender must use any given address 
only once (for receiving or sending coins): after receiving a coin c, a user u should immediately 
generate a new address and pour c into a fresh one cJ relative to the new address; only afterwards 
can u spend the coin. Second, a user should not put any data in a ciphertext Ci to communicate 
a coin’s information, but must instead use some (informationally-secure) out-of-band channel to 

do so. With these modifications (and recalling that COMM is statistically hiding and πPOUR is a 

perfect-zero-knowledge proof), one can verify that the pour transaction txPour is statistically hiding, 
i.e., leaks no information even to unbounded adversaries.26 

 
8.2 Fast block propagation 

As mentioned in Section 7.3, the higher block-verification time of Zero compared to, e.g., Bitcoin does 
not affect much block propagation. Even so, we note a simple modification that further mitigates 
concerns. Upon receiving a block, a node validates the proof of work and (optionally) transactions 
other than mint and pour, and then forward the block right away. Only afterwards, the node 

executes VerifyTransaction on any mint/pour transactions, before accepting it for use in transacting. 
Thus, blocks are still validated by every node (so the security properties are unhampered), and 
propagation delays in the broadcast of blocks are reduced. 

In principle, this opens the possibility of a denial-of-service attack, in which the network is 
spammed with invalid blocks which pass the proof-of-work check but contain invalid mint or pour 
transactions. However, this attack appears unrealistic given the enormous (by design) cost of 
creating blocks passing the proof-of-work check. 

 
8.3 Improved storage requirements 

Beyond the ledger L, users need to maintain two lists: CMList, the list of all coin commitments, 
and SNList, the list of all serial numbers of spent coins (see Section 3.1).   In our construction, 
CMList is required to deduce authentication paths to create new pour transactions (via Pour), while 
SNList is used to verify pour transactions (via VerifyTransaction). As the ledger grows, both CMList 

and SNList grow in size, and can eventually impose substantial storage requirements (though both 
are derived from, and smaller than, the block chain per se). We now explain how these storage 
requirements can be mitigated, by relying on smaller representations of CMList and SNList that 
suffice within our construction. 

 
8.3.1 Supporting many coin commitments 

To execute the Pour algorithm to spend a coin c, a user u needs to provide an authentication path 
from c’s coin commitment to rt, the Merkle-tree root over CMList. If we make the following protocol 
modifications, u does not need all of CMList to compute this authentication path. 

26As for mint transactions, one can verify that they are already statistically hiding, without any modifications. 
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In each block B of transactions, we store the Merkle-tree path pathB from the first coin 

commitment in B to the root rtB of the Merkle tree over CMList when the last block in the ledger 
is B. (In Zero, the additional per-block storage cost to store this information is only 2 KiB.) 

Note that, given a block B and its successor block BJ, the corresponding authentication paths 
pathB and pathB′ can be easily checked for consistency as follows. Let CMListB and CMListB′ be 

the two lists of coin commitments corresponding to the two ledgers ending in block B and BJ 
respectively; since CMListB (i.e., coin commitments to “to the left” of pathB) is a prefix of CMListB′ , 

pathB′ can be computed from pathB and B in time O(|B|dtree), where dtree is the tree depth. 
When the user u first receives (or mints) the coin c, and its coin commitment is included in a 

block B, u immediately computes pathB, by using the predecessor block and its authentication path. 

Afterwards, each time a new block is added to the ledger, u obtains a new path for c by using the 
new block and the old path for c.  Thus, u only needs to act each time a new block is added, and 
each such update costs O(dtree) per transaction in the block. 

Overall, u incurs a storage requirement of only O(dtree) for each coin he owns,  and does not 
need to store CMList anymore. 

 
8.3.2 Supporting many spent serial numbers 

To execute the VerifyTransaction algorithm on a pour transaction txPour, a user u needs access to 

SNList (in order to check for duplicate serial numbers). Note, in Bitcoin, nodes need to maintain 
only the list of unspent transaction outputs, which is pruned as outputs are spent. In a DAP scheme, 

in contrast, nodes have to maintain SNList, which is a list that always grows. We now explain how 
to mitigate this storage requirement, in three incremental steps. 

Step 1. The first step is to build a Merkle tree over SNList so to allow easy-to-verify non-membership 
proofs for SNList; this can be done by letting the leaves of the Merkle tree be the intervals of unspent 
serial numbers. Then, given the root rt of such tree, a serial number sn claimed to be unspent, and 
an authentication path path for an interval I, the user can check that path is valid for rt and that 
sn lies in I; the root rt and path path would be part of the pour transaction txPour to be verified. 
The problem with this approach, however, is that generating path (and also updating rt) requires 
knowledge of all of SNList. 

Step 2.   Next, instead of maintaining SNList in a single Merkle tree, we divide SNList, maintaining 
its chronological order, into sublists of serial numbers SNList0, SNList1, . . . and build a Merkle tree 
over the intervals induced by each sublist (i.e., apply Step 1 to each sublist). This modification 
implies a corresponding modification for the auxiliary information stored in a pour transaction 
that allows VerifyTransaction to check it. Now, however, producing such auxiliary information 
is less expensive. Indeed, a user with a coin c should maintain a  list  of  authentication  paths 
pathc,0, pathc,1, . . . (one for each sublist). Only the last path, corresponding to the active sublist, 

needs to be updated when a serial number is added; the other sublists and authentication paths 
remain unchanged (and these old sublists can in fact be discarded). When the user spends the coin, 
he can simply include these paths in the pour transaction. While updating these paths is an efficient 
operation, computing the initial paths for c is not, as it still requires the full set of sublists. 

Step 3. To enable users to avoid the initial cost of computing paths for a new coin, we proceed 
as follows. First, a coin c is extended to contain a time stamp Tc corresponding to when c is 
created (minted or poured into); the coin’s commitment is modified to depend on the timestamp, 
and the timestamp is included in the clear within the transaction that creates the coin. Then, a 

user, upon spending c, produces a zk-SNARK for the following NP statement: “for each Merkle-tree 
root created (or updated) after Tc there is an interval and an authentication path for that interval 
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such that the serial number of c is in that interval”. Depending on the number of Merkle trees in 
such an NP statement, such proofs may already be more efficient to produce, compared to the naive 
(Step 1) solution, using existing zk-SNARK implementations. 

 
9 Concurrent work 

Danezis et al. [DFKP13] suggest using zk-SNARKs to reduce proof size and verification time in 
Zerocoin. Our work differs from [DFKP13] in both supported functionality and scalability. 

First, [DFKP13]’s protocol, like Zerocoin, only supports fixed-value coins, and is best viewed 
as a decentralized mix. Instead, we define, construct, and implement a full-fledged decentralized 
electronic currency, which provides anonymous payments of any amount. 

Second, in [DFKP13], the complexity of the zk-SNARK generator, prover, and verifier all scale 
superlinearly in the number of coins, because their arithmetic circuit computes, explicitly, a product 
over all coins. In particular, the number of coins “mixed together” for anonymity cannot be large. 
Instead, in our construction, the respective complexities are polylogarithmic, polylogarithmic, and 
constant in the number of coins; our approach supports a practically-unbounded number of coins. 

While we do not rely on Pedersen commitments, our approach also yields statistical (i.e., 
everlasting) anonymity; see the discussion in Section 8.1. 

 
10 Conclusion 

Decentralized currencies should ensure a user’s privacy from his peers when conducting legitimate 
financial transactions. Zero provides such privacy protection, by hiding user identities, trans- action 
amounts, and account balances from public view. This, however, may be criticized for hampering 
accountability, regulation, and oversight. Yet Zero need not be limited to enforcing the basic 
monetary invariants of a currency system. The underlying zk-SNARK cryptographic proof machinery 
is flexible enough to support a wide range of policies. It can, for example, let a user prove that he 
paid his due taxes on all transactions without revealing those transactions, their amounts, or even 
the amount of taxes paid. As long as the policy can be specified by efficient nondeterministic 

computation using NP statements, it can (in principle) be enforced using zk-SNARKs, and added 
to Zero. This can enable automated, privacy-preserving verification and enforcement of a wide 
range of compliance and regulatory policies that would otherwise be invasive to check directly or 
might be bypassed by corrupt authorities. This raises research, policy, and engineering questions 
regarding which such policies are desirable and practically realizable. 

Another research question is what new functionality can be realized by augmenting the capabilities 
already present in Bitcoin’s scripting language with zk-SNARKs that allow fast verification of 
expressive statements. 
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Σ 

9 

A Overview of Bitcoin and Zerocoin 

We provide an overview of the Bitcoin and Zerocoin protocols. For more details, we refer the reader 
to Nakamoto [Nak09] and Miers et al. [MGGR13] respectively. 

 
A.1 Bitcoin 

Bitcoin [Nak09] is a decentralized currency operated by a collection of mutually-distrusting peers. 
It consists of three basic components: (i) a peer-to-peer network for broadcasting new transactions; 

(ii) semantics for identifying and validating new transactions; and (iii) a protocol for maintaining a 
decentralized ledger, known as the block chain, that stores the history of all valid transactions so far. 

Identities in Bitcoin are represented via ECDSA public keys. Each user u generates an ECDSA 
key pair (vku, sku) and, to receive payments, publishes the verification key vku (or its hash) as an 
address. (In fact, there is no limit to the number of addresses that an individual user may possess.) 

Transactions. A transaction tx represents a payment from a list of input transactions to a list of 

output recipients.  More precisely, tx is specified by a list {Ij}j of inputs and a list {Oj}j of outputs. 
Each output Oj  specifies a value vj, denominated in Satoshi  (10   Satoshi amounts to 1 bitcoin), and 
a recipient specification rj, called ScriptPubKey. The specification rj is given in Bitcoin script, a 
stack-based non-Turing-complete language similar to Forth, and specifies the identity of the recipient 
of the vj  Satoshi.  Each input Ij  references an output of a previous transaction txj :  the reference is 
specified by a tuple (hj , kj , σj), where hj  is the hash of txj , kj  is an index specifying which output of 
txj  is referenced, and σj , called ScriptSig, is a an input satisfying the ScriptPubKey of the kj-th 
output of  txj .  Typically,  the ScriptPubKey specifies  a public  key  that must  sign  the  transaction 
spending the output and σj contains such a signature, hence their names. Inputs can only be 
claimed by one transaction to prevent double spending. 

The total number of bitcoins output by a transaction,     j vj, cannot exceed the total value of 

the referenced outputs. Any difference between these two quantities is claimed as a transaction fee 
(see below).  Thus, any unspent inputs to a transaction become a fee, and transactions typically 
have at least two outputs: one to the payment’s recipient and one back to the sender as “change”. 

The block chain. Transactions are broadcast in the Bitcoin peer-to-peer network, but are 
considered valid only once they have been added to the the block chain. To assemble the block 
chain, miners (usually but not necessarily, network nodes) collect transactions from the Bitcoin 
network and bundle them into blocks. Miners then compete for the opportunity to append their 
own candidate block B to the block chain by searching for a string s such that the integer specified 

by SHA256(SHA256(Bǁs)) is below some threshold. To incentivize block creation, miners receive 
a protocol-specified reward (currently 25 BTC) for adding a new block and, moreover, receive 
per-transaction fees (whose value is specified by the transaction’s creator). 

The proof of work protects a block against tampering and also ensures that meaningful compu- 
tational resources were devoted to finding it. This prevents a sybil attack since all the sybils share 
the same total computational resources (e.g., the server they are virtualized on). Bitcoin assumes 
that provided more than half the computational work is held by honest nodes, the block-chain is 
secure. (Though recent work [ES13] has suggested that the threshold may be larger than 50%.) 

 
A.2 Zerocoin 

Zerocoin extends Bitcoin by creating two new transaction types: mint and spend. A mint transaction 
allows a user to exchange a quantity of bitcoins for the right to mint a new zerocoin. Each zerocoin 

consists of a digital commitment cm to a random serial number sn. At a later point, a (potentially 
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different) user may issue a spend transaction containing a destination identity, the serial number 

sn, and a non-interactive zero-knowledge proof for the NP statement “I know secret cm and r 

such that (i) cm can be opened to sn with commitment randomness r, and (ii) cm was previously 
minted at some point in the past”. Crucially, the proof, being zero knowledge, does not link the 
spend transaction to any particular mint transaction (among all mint transactions so far). If the 
proof verifies correctly and the serial number has not been spent previously, the protocol semantics 
transfer a corresponding amount of bitcoins to the destination address. In this fashion, Zerocoin 
functions as a decentralized mix. 

Zerocoin uses Pedersen commitments over a prime field Fp, i.e., cm := gsnhr, for random 
generators  g, h  of  a  subgroup  of  F∗p.   The  corresponding  zero-knowledge  proofs  are  constructed 

by first accumulating (via the Strong-RSA accumulator of [CL01]) the set of commitments of all 
minted zerocoins, and then proving knowledge of the corresponding commitment randomness and 
membership in this set. For technical reasons, the proof requires a double-discrete-logarithm (DDL) 

Fiat–Shamir proof of size ≈ |p|λ, where λ is the security parameter. In practice, the size of these 
proofs exceeds 45 kB at the 128-bit security level, and require 450 ms or more to verify. 

Also note that, in Zerocoin, computing the witness for the accumulator requires access to 
the entire set of commitments so far (though the witness can be incrementally updated for each 
insertion). This technique supports an unlimited number of coins. In contrast, our construction 
places a cap N on the number of coins (in our implementation, N = 264) but needs only log N 
updates to issue N new coins (and these updates can be efficiently batched, cf. Section 8.3.1). 

 
B Completeness of DAP schemes 

A DAP scheme Π = (Setup, CreateAddress, Mint, Pour, VerifyTransaction, Receive) is complete if no 

polynomial-size ledger sampler S can win the incompleteness experiment with more than negligible 
probability. In Section 3.4 we informally described this property; we now formally define it. 

Definition B.1. Let Π = (Setup, CreateAddress, Mint, Pour, VerifyTransaction, Receive) be a (candi- 

date) DAP scheme. We say that Π is complete if, for every poly(λ)-size ledger sampler S and 
sufficiently large λ, 

AdvINCOMP(λ) < negl(λ) , 
Π,S 

where AdvINCOMP(λ) := Pr[INCOMP(Π, S, λ) = 1] is S’s advantage in the incompleteness experiment. 

We now describe the  incompleteness  experiment  mentioned  above. Given  a  (candidate) 

DAP scheme Π, a ledger sampler S, and a security parameter λ, the (probabilistic) experiment 

INCOMP(Π, S, λ) consists of an interaction between S and a challenger C, terminating with a binary 

output by C. 
At the beginning of the experiment, C samples pp ← Setup(1λ) and sends pp to S. Then, S 

sends a ledger, two coins to be spent, and parameters for a pour transaction; more precisely, 
sends (1) a ledger L; (2) two coins cold, cold; (3) two address secret keys addrold , addrold ; (4) two 

1 2 sk,1 sk,2 
values vnew, vnew; (5) new address key pairs (addrnew , addrnew), (addrnew , addrnew); (6) a public value 

1 2 pk,1 sk,1 pk,2 sk,2 

vpub; and (7) a transaction string info. Afterwards, C performs various checks on S’s message. 
Concretely, C first checks that cold and cold are valid unspent coins, i.e., checks that:  (i) cold 

and cold are well-formed; (ii) their coin commitments cmold and cmold appear in (valid) transactions 
2 1 2 

on L; (iii) their serial numbers snold and snold do not appear in (valid) transactions on L. Next, C 
checks that vnew + vnew + vpub = vold + vold (i.e., the values suggested by S preserve balance) and 

vold + vold ≤ vmax (i.e., the maximum value is not exceeded).  If any of these checks fail, C aborts 
and outputs 0. 
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Otherwise, C computes rt, the Merkle-tree root over all coin commitments in L (appearing in 
valid transactions), and, for i ∈ {1, 2, }, pathi, the authentication path from commitment cmold to 

the root rt. Then, C attempts to spend cold, cold as instructed by S: 

(cnew, cnew, txPour) ← Pour(pp, rt, cold, cold, addrold , addrold , path1, path2, vnew, vnew, addrnew , addrnew , vpub, info) . 
 

Finally, C outputs 1 if and only if any of the following conditions hold: 
• txPour =/ (rt, snold, snold, cmnew, cmnew, vpub, info, ∗), where cmnew, cmnew are the coin commitments 

1 2 1 2 1 2 
of cnew, cnew; OR 

1 2 

• txPour is not valid, i.e., VerifyTransaction(pp, txPour, L) outputs 0; OR 
• for some i ∈ {1, 2}, the coin cnew is not returned by Receive(pp, (addrnew, addrnew), LJ), where LJ 

i 

is the ledger obtained by appending txPour to L. 
pk,i sk,i 

Remark. There is no need for the challenger C check that, in turn, both cnew and cnew are spendable, 

because this follows by induction. Namely, if cnew, cnew were not spendable, a different sampler SJ 
(that simulates S and then computes and outputs cnew and cnew) would provide a counterexample 

1 2 

to the above definition. 

 
C Security of DAP schemes 

 

A DAP scheme Π = (Setup, CreateAddress, Mint, Pour, VerifyTransaction, Receive) is secure if it satis- 
fies ledger indistinguishability, transaction non-malleability, and balance. (See Definition 3.2.) In 
Section 3.4 we informally described these three properties; we now formally define them. 

Each of the definitions employs an experiment involving a (stateful) DAP oracle ODAP that 
receives and answers queries from an adversary A (proxied via a challenger C, which performs the 
experiment-specific sanity checks). Below, we first describe how ODAP works. 

The oracle ODAP is initialized by a list of public parameters pp and maintains state. Internally, 

ODAP stores: (i) L, a ledger; (ii) ADDR, a set of address key pairs; (iii) COIN, a set of coins. All of 
L, ADDR, COIN start out empty. The oracle ODAP accepts different types of queries, and each query 
causes different updates to L, ADDR, COIN and outputs. We now describe each type of query Q. 

• Q = (CreateAddress) 

1. Compute (addrpk, addrsk) := CreateAddress(pp). 
2. Add the address key pair (addrpk, addrsk) to ADDR. 
3. Output the address public key addrpk. 

The ledger L and coin set COIN remain unchanged. 

• Q = (Mint, v, addrpk) 

1. Compute (c, txMint) := Mint(pp, v, addrpk). 
2. Add the coin c to COIN. 
3. Add the mint transaction txMint to L. 

4. Output ⊥. 

The address set ADDR remains unchanged. 

• Q = (Pour, idxold, idxold, addrold , addrold , info, vnew, vnew, addrnew , addrnew , vpub) 

1. Compute rt, the root of a Merkle tree over all coin commitments in L. 
2. For each i 1, 2 : 

(a) Let cmold be the idxold-th coin commitment in L. 
i i 
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(b) Let txi be the mint/pour transaction in L that contains cmold. 
(c) Let cold be the first coin in COIN with coin commitment cmold. 

i i 
(d) Let (addrold , addrold ) be the first key pair in ADDR with addrold   being cold’s address. 

pk,i sk,i pk,i i 

(e) Compute pathi, the authentication path from cmold to rt. 
3. Compute (cnew, cnew, txPour)  :=  Pour(pp, rt, cold, cold, addrold , addrold , path1, path2, vnew, vnew, 

1 2 1 2 sk,1 sk,2 1 2 
addrnew , addrnew , vpub, info). 

pk,1 pk,2 

4. Verify that VerifyTransaction(pp, txPour, L) outputs 1. 
5. Add the coin cnew to COIN. 
6. Add the coin cnew to COIN. 
7. Add the pour transaction txPour to L. 

8. Output ⊥. 

If any of the above operations fail, the output is ⊥ (and L, ADDR, COIN remain unchanged). 

• Q = (Receive, addrpk) 

1. Look up (addrpk, addrsk) in ADDR. (If no such key pair is found, abort.) 

2. Compute (c1, . . . , cn) ← Receive(pp, (addrpk, addrsk), L). 
3. Add c1, . . . , cn to COIN. 
4. Output (cm1, . . . , cmn), the corresponding coin commitments. 

The ledger L and address set ADDR remain unchanged. 

• Q = (Insert, tx) 

1. Verify that VerifyTransaction(pp, tx, L) outputs 1. (Else, abort.) 
2. Add the mint/pour transaction tx to L. 
3. Run Receive for all addresses addrpk in ADDR; this updates the COIN with any coins that 

might have been sent to honest parties via tx. 

4. Output ⊥. 

The address set ADDR remains unchanged. 

Remark. The oracle ODAP provides A with two ways to cause a pour transaction to be added to L. 

If A has already obtained address public keys addrpk,1 and addrpk,2 (via previous CreateAddress 

queries), then A can use a Pour query to elicit a pour transaction txPour (despite not knowing 
address secret keys addrsk,1, addrsk,2 corresponding to addrpk,1, addrpk,2). Alternatively, if A has 

himself generated both address public keys, then A knows corresponding address secret keys, and 
can invoke Pour “in his head” to obtain a pour transaction txPour, which he can add to L by using 
an Insert query. In the first case, both addresses belong to honest users; in the second, both to A. 

But what about pour transactions where one address belongs to an honest user and one to A? 
Such pour transactions might arise from MPC computations (e.g., to make matching donations). 

The ledger oracle ODAP, as defined above, does not support such queries. While extending the 
definition is straightforward, for simplicity we leave handling such queries to future work. 

 

C.1 Ledger indistinguishability 

Ledger indistinguishability is characterized by an experiment L-IND, which involves a polynomial-size 

adversary A attempting to break a given (candidate) DAP scheme. 

Definition C.1. Let Π = (Setup, CreateAddress, Mint, Pour, VerifyTransaction, Receive) be a (candi- 

date) DAP scheme. We say that Π is L-IND secure if, for every poly(λ)-size adversary A and 
sufficiently large λ, 

AdvL-IND(λ) < negl(λ) , 
Π,A 
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where AdvL-IND(λ) := 2 · Pr[L-IND(Π, A, λ) = 1] − 1 is A’s advantage in the L-IND experiment. 

We now describe the L-IND experiment mentioned above. Given a (candidate) DAP scheme Π, 

adversary A, and security parameter λ, the (probabilistic) experiment L-IND(Π, A, λ) consists of an 

interaction between A and a challenger C, terminating with a binary output by C. 
At the beginning of the experiment, C samples b ∈ {0, 1} at random, samples pp ← Setup(1λ), 

and sends pp to A; next, C initializes (using pp) two separate DAP oracles ODAP and ODAP (i.e., 
0 1 

the two oracles have separate ledgers and internal tables). 
The experiment proceeds in steps and, at each step, C provides to A two ledgers (LLeft, LRight), 

where LLeft := Lb is the current ledger in ODAP and LRight := L1−b the one in ODAP; then A sends 
J 

b 1−b 

to C a pair of queries (Q, Q ), which must be of the same type (i.e., one of CreateAddress, Mint, 
Pour, Receive,  Insert). The  challenger C acts differently depending on  the query type, as follows. 
• If the query type is Insert, C forwards Q to ODAP, and QJ to ODAP. This allows A to insert his 

b 

own transactions directly in LLeft and LRight. 
1−b 

• For any other query type, C first ensures that Q, QJ are publicly consistent (see below) and then 
forwards Q to ODAP, and QJ to ODAP; letting (a0, a1) be the two oracle answers, C replies to A 

with (ab, a1−b). This allows A to elicit behavior from honest users. However note that A does not 

know the bit b, and hence the mapping between (LLeft, LRight) and (L0, L1); in other words, A 
does not know if he elicits behavior on (L0, L1) or on (L1, L0). 

At the end of the experiment, A sends C a guess bJ ∈ {0, 1}. If b = bJ, C outputs 1; else, C outputs 0. 

Public  consistency.   As  mentioned  above,  A sends  C pairs  of  queries  (Q, QJ),  which  must  be 
of the same type and publicly consistent, a property that we now define. If Q, Q are both of 
type CreateAddress or Receive, then they are always publicly consistent. In the special case of 
CreateAddress we require that both oracles generate the same address. If they are both of type 
Mint, then the minted value in Q must equal that in QJ.  Finally, if they are both of type Pour, 
the following restrictions apply. 

First, Q, QJ must be individually well-formed; namely, (i) the coin commitments referenced by 
Q (via the two indices idxold, idxold) must correspond to coins cold, cold that appear in the ledger 

1 2 1 2 
oracle’s coin table COIN; (ii) the two coins cold, cold must be unspent (i.e. their serial numbers must 

1 2 

not appear in a valid pour transactions on the corresponding oracle’s ledger); (iii) the address public 
keys specified in Q must match those in cold, cold; and (iv) the balance equation must hold (i.e., 

1 2 

vnew + vnew + vpub = vold + vold). 1 2 1 2 

Furthermore, Q, QJ must be jointly consistent with respect to public information and ’s view; 
namely: (i) the public values in Q and QJ must equal; (ii) the transaction strings in Q and QJ must 

equal; (iii) for each i ∈ {1, 2}, if the i-th recipient addresses in Q is not in ADDR (i.e., belongs to A) 
then vnew in both Q and QJ must equal (and vice versa for QJ); and (iv) for each i ∈ {1, 2}, if the 
i-th index in Q references (in L0) a coin commitment contained in a transaction that was posted via 
an Insert query, then the corresponding index in QJ must reference (in L1) a coin commitment that 
also appears in a transaction posted via an Insert query and, moreover, vold in both Q and QJ must 

equal (and vice versa for QJ). The challenger C learns vold by looking-up the corresponding coin cold 

in the oracle’s coin set COIN. (v) for each i ∈ {1, 2} if the i-th index in Q must not reference a coin 
that has previously been spent. 

 
C.2 Transaction  non-malleability 

Transaction non-malleability is characterized by an experiment TR-NM, which involves a polynomial- 

size adversary A attempting to break a given (candidate) DAP scheme. 
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Definition C.2. Let Π = (Setup, CreateAddress, Mint, Pour, VerifyTransaction, Receive) be a (candi- 

date) DAP scheme. We say that Π is TR-NM secure if, for every poly(λ)-size adversary A and 
sufficiently large λ, 

AdvTR-NM(λ) < negl(λ) , 
Π,A 

where AdvTR-NM(λ) := Pr[TR-NM(Π, A, λ) = 1] is A’s advantage in the TR-NM experiment. 

We now describe the TR-NM experiment mentioned above. Given a (candidate) DAP scheme Π, 

adversary A, and security parameter λ, the (probabilistic) experiment TR-NM(Π, A, λ) consists of 

an interaction between A and a challenger C, terminating with a binary output by C. 
At the beginning of the experiment, C samples pp ← Setup(1λ) and sends pp to A; next, C 

initializes a DAP oracle ODAP with pp and allows A to issue queries to ODAP. At the end of the 
experiment, A sends C a pour transaction tx∗, and C outputs 1 if and only if the following conditions 
hold.  Letting T be the set of pour transactions generated by ODAP in response to Pour queries, 
there exists tx ∈ T such that:  (i) tx∗ = tx; (ii) VerifyTransaction(pp, tx∗, LJ) = 1, where LJ is the 
portion of the ledger preceding tx;27 and (iii) a serial number revealed in tx∗ is also revealed in tx. 

 
C.3 Balance 

Balance is characterized by an experiment BAL, which involves a polynomial-size adversary A 
attempting to break a given (candidate) DAP scheme. 

Definition C.3. Let Π = (Setup, CreateAddress, Mint, Pour, VerifyTransaction, Receive) be a (can- 

didate) DAP scheme. We say that Π is BAL secure if, for every poly(λ)-size adversary A and 
sufficiently large λ, 

AdvBAL(λ) < negl(λ) , 
Π,A 

where AdvBAL(λ) := Pr[BAL(Π, A, λ) = 1] is A’s advantage in the BAL experiment. 

We now describe the BAL experiment mentioned above. Given a (candidate) DAP scheme Π, 

adversary A, and security parameter λ, the (probabilistic) experiment BAL(Π, A, λ) consists of an 

interaction between A and a challenger C, terminating with a binary output by C. 

At the beginning of the experiment, C samples pp ← Setup(1λ), and sends pp to A; next, C 

(using pp) initializes a DAP oracle ODAP and allows A to issue queries to ODAP. At the conclusion 

of the experiment, A sends C a set of coins Scoin. Recalling that ADDR is the set of addresses 
returned by CreateAddress queries (i.e., addresses of “honest” users), C computes the following 
five quantities. 

• vUnspent, the total value of all spendable coins in Scoin.  The challenger C can check if a coin 
c    Scoin is spendable as follows: mint a fresh coin c  of value 0 (via a Mint query) and check if 
a corresponding Pour query consuming c, cJ yields a pour transaction txPour that is valid. 

• vMint,  the total value of all coins minted by A.  To compute vMint,  the challenger C sums up 
the values of all coins that (i) were minted via Mint queries using addresses not in ADDR, or 
(ii) whose mint transactions were directly placed on the ledger via Insert queries. 

• vADDR→A, the total value payments received by A from addresses in ADDR. To compute vADDR→A, 

the challenger C looks up all pour transactions placed on the ledger via Pour queries and sums 
up the values that were transferred to addresses not in ADDR. 

27That is, L′ is the longest ledger prefix that can be used to spend at least one of the coins spent in tx. 
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• vA→ADDR, the total value of payments sent by A to addresses in ADDR. To compute vA→ADDR, 
the challenger C first deduces the set SJ ⊆ COIN of all coins received by honest parties and then 
sums up the values of coins in SJ. (Note that C can compute SJ by selecting all coins in COIN 

that are both tied to an address in ADDR and arose from transactions placed on the ledger by 
Insert queries.) 

• vBasecoin, the total value of public outputs placed by A on the ledger. To compute vBasecoin, the 

challenger C looks up all pour transactions placed on the ledger by Insert and sums up the 
corresponding vpub values. 

At the end of the experiment, C outputs 1 if vUnspent + vBasecoin + vA→ADDR > vMint + vADDR→A; else, 

C outputs 0. 

Remark. There are two methods for A to spend more public-output money than he owns: (i) by 
directly inserting transactions on the ledger, and (ii) by asking honest parties to create such 
transactions. The first method is accounted for in the computation of vBasecoin, while the second 

method is accounted for in the computation of vA→ADDR (since A must first pay the honest party). 

D Proof of Theorem 4.1 

We prove Theorem 4.1. We omit a formal proof of the completeness claim; one can verify that 
the DAP scheme’s completeness follows, in a straightforward way, from the completeness of the 
construction’s building blocks. Next, we argue security via three separate proofs, respectively showing 
that our construction satisfies (i) ledger indistinguishability, (ii) transaction non-malleability, and 
(iii) balance. 

 
D.1 Proof of ledger indistinguishability 

We describe a simulation 3sim in which the adversary A interacts with a challenger C, as in the L-
IND experiment. However 3sim differs from the L-IND experiment in a critical way: all answers sent 

to A are computed independently of the bit b, so that A’s advantage in 3sim is 0. The remainder of 

the proof is devoted to showing that AdvL-IND(λ) (i.e., A’s advantage in the L-IND experiment) is at 

most negligibly different than A’s advantage in 3sim. 

The  simulation. The simulation 3sim works as follows.  First,  after sampling  b ∈ {0, 1} at random, C 
samples pp ← Setup(1λ), with the following modification: the zk-SNARK keys are generated as 
(pkPOUR, vkPOUR, trap) ← Sim(1λ, CPOUR), to obtain the zero-knowledge trapdoor trap. Then, as in the L-

IND experiment, C sends pp to A, and then initializes two separate DAP oracles ODAP and ODAP. 
Afterwards, as in L-IND, 3sim proceeds in steps and, at each step, C provides to A two ledgers 

(LLeft, LRight), where LLeft := Lb is the current ledger in ODAP  and LRight := L1−b the one in ODAP; 
J 

b 1−b 

then A sends to C a message (Q, Q ), which consist of two (publicly-consistent) queries of the same 

type. The challenger C acts differently depending on the query type, as follows. 

• Answering CreateAddress queries. In this case, Q = QJ = CreateAddress. 

To answer Q, C behaves as in L-IND, except for the following modification: after obtaining 
(addrpk, addrsk) ← CreateAddress(pp), C replaces apk in addrpk with a random string of the appro- 
priate length; then, C stores addrsk in a table and returns addrpk to A. 

Afterwards, C does the same for QJ. 
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• Answering Mint queries. In this case, Q = (Mint, v, addrpk) and QJ = (Mint, v, addrJ
pk). 

To answer Q, C behaves as in L-IND, except for the following modification: the Mint algorithm 
computes the commitment k as COMMr(τ ǁρ), for a random string τ of the appropriate length, 
instead of as COMMr(apkǁρ), where apk is the value specified in addrpk. 

Afterwards, C does the same for QJ. 

• Answering Pour queries. In this case, Q and QJ both have the form (Pour, cmold, cmold, addrold , 

addrold , info, vnew, vnew, addrnew , addrnew , vnew). 
1 2 pk,1 

pk,2 1 2 pk,1 pk,2 pub 

To answer Q, C modifies the way some values are computed: 

1. Compute rti by accumulating all of the valid coin commitments on Li. 

2. Set vpub and info to the corresponding input values. 
3. For each j 1, 2 : 

(a) Sample a uniformly random snold. 
(b) If addrnew is an address generated by a previous query to CreateAddress, (i) sample 

a coin commitment cmnew on a random input, (ii) run Kenc(ppenc) → (pkenc, skenc) and 
compute Cnew := Eenc(pkenc, r) for a random r of suitable length. 

(c) Otherwise, calculate (cmnew, Cnew) as in the Pour algorithm.28 
i i 

4. Set h1 and h2 to be random strings of the appropriate length. 
5. Compute all remaining values as in the Pour algorithm 
6. The pour proof is computed as πPOUR := Sim(trap, x), where x := (rt, snold, snold, cmnew, cmnew, vpub, h1, h2). 

Afterwards, C does the same for QJ. 

1 2 1 2 

• Answering Receive queries. In this case, Q = (Receive, addrpk) and QJ = (Receive, addrJ
pk). 

The answer to each query proceeds as in the L-IND experiment. 

• Answering Insert queries. In this case, Q = (Insert, tx) and Q = (Insert, txJ). The answer to 
each query proceeds as in the L-IND experiment. 

In each of the above cases, the response to A is computed independently of the bit b. Thus, when 

A outputs a guess bJ, it must be the case that Pr [ b = bJ ] = 1/2, i.e., A’s advantage in 3sim is 0. 

Proof  that  the  simulation  is  indistinguishable  from  the  real  experiment.     We  now  describe 

a sequence of hybrid experiments (3real, 31, 32, 33, 3sim) in each of which a challenger C conducts a 

modification of the L-IND experiment with A. We define 3real to be the original L-IND experiment, 
and 3sim to be the simulation described above. 

With a slight abuse of notation, given experiment 3, we define Adv3 to be the absolute value of the 

difference between (i) the L-IND advantage of A in 3 and (ii) the L-IND advantage of A in 3real. 
Also, let 

• qCA  be the total number of CreateAddress queries issued by A, 

• qP  be the total number of Pour queries issued by A, and 
qM be the total number of Mint queries issued by . 

Finally, define AdvEnc to be     ’s advantage in Enc’s IND-CCA and IK-CCA experiments, AdvPRF to be 
COMM 

A’s advantage in distinguishing the pseudorandom function PRF from a random one, and Adv 

to be A’s advantage against the hiding property of COMM. 
We now describe each of the hybrid experiments. 

28Note that by the restrictions of the experiment, the value vnew is identical between QLeft and QRight. 
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• Experiment 31. The experiment 31 modifies 3real by simulating the zk-SNARKs. More 
precisely, we modify 3real so that C simulates each zk-SNARK proof, as follows. At the beginning 
of the experiment, instead of invoking KeyGen(1λ, CPOUR), C invokes Sim(1λ, CPOUR) and obtains 
(pkPOUR, vkPOUR, trap). At each subsequent invocation of the Pour algorithm, C computes πPOUR ← 
Sim(trap, x), without using any witnesses, instead of using Prove. Since the zk-SNARK system is 
perfect zero knowledge, the distribution of the simulated πPOUR is identical to that of the proofs 
computed in 3real. Hence Adv31 = 0. 

• Experiment      32. The experiment 32 modifies 31 by replacing the ciphertexts in a pour 
transaction by encryptions of random strings. More precisely, we modify 31 so that, each time 
issues a Pour query where one of the output addresses (addrnew , addrnew ) is in the set of addresses 

pk,1 pk,2 
previously generated by a CreateAddress query, the two ciphertexts Cnew, Cnew are generated 

1 2 

as follows: (i) (pknew, sknew) ← Kenc(ppenc); (ii) for each j ∈ {1, 2}, Cnew := Eenc(pknew , r) where r 
is a message sampled uniformly from the plaintext space of the encryption scheme. By Lemma D.1 

(see below), |Adv32   − Adv31 | ≤ 4 · qP · AdvEnc. 

• Experiment 33. The experiment 33 modifies 32 by replacing all PRF-generated values with 
random strings. More precisely, we modify 32 so that: 

– each time A issues a CreateAddress query, the value apk within the returned addrpk is 
substituted with a random string of the same length; 

– each time A issues a Pour query, each of the serial numbers snold, snold in txPour is substituted 
with a random string of the same length, and hinfo with a random string of the same length. 

By Lemma D.2 (see below), |Adv33   − Adv32 | ≤ qCA · AdvPRF. 

• Experiment 3sim. The experiment 3sim is already described above. For comparison, we explain 
how it differs from 33: the coin commitments are replaced with commitments to random inputs. 
More precisely, we modify 33 so that: 

– each time A issues a Mint query, the coin commitment cm in txMint is substituted with a 
commitment to a random input; and 

– each time A issues a Pour query, then, for each j ∈ {1, 2}, if the output address addrnew is in 
the set of addresses previously generated by an CreateAddress query, cm is substituted 
with a commitment to a random input. 

By Lemma D.3 (see below), |Adv3sim  − Adv33 | ≤ (qM + 4 · qP) · AdvCOMM. 

As argued above, the responses provided to A in 3sim are independent of the bit b, so that Adv3sim = 0. 

Then, by summing over A’s advantages in the hybrid experiments, we can bound A’s advantage in 
3real by 

AdvL-IND(λ) ≤ 4 · qP · AdvEnc + qCA · AdvPRF + (qM + 4 · qP) · AdvCOMM  , 

which is negligible in λ. This concludes the proof of ledger indistinguishability. Below, we sketch 
proofs for the lemmas used above (Lemma D.1, Lemma D.2, and Lemma D.3). 

Lemma D.1. Let AdvEnc be the maximum of: 

• A’s advantage in the IND-CCA experiment against the encryption scheme Enc, and 

• A’s advantage in the IK-CCA experiment against the encryption scheme Enc. 
Then after qP  Pour queries, |Adv32   − Adv31 | ≤ 4 · qP · AdvEnc. 
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Proof sketch.  Define ϵ := Adv32  − Adv31 .  Using A, we first show how to construct a solver with 
advantage ≥   є     in the IK-CCA or IND-CCA experiments. We use a hybrid H, intermediate between 

31 and 3 
2 qP 

2; concretely, H modifies 31 so that each ciphertext (where the corresponding public key 
appears in the set generated by a CreateAddress query) is replaced with the encryption of the same 

plaintext, but under a new, random public key generated via the Kenc algorithm.  (For comparison, 
32 modifies H so that each plaintext is replaced with a random plaintext drawn from the plaintext 

space.)  We now argue that A’s advantage in distinguishing H and 31  is at most 2 · qP · AdvEnc, and 

so is for distinguishing 32  and H.  Overall, we deduce that |Adv32   − Adv31 | ≤ 4 · qP · AdvEnc. 
First,  we  discuss  H  and  31.  For  some  j  ∈ {1, . . . , qCA},  when  A makes  the  j-th  query  of  the 

form CreateAddress, query the IK-CCA challenger to obtain two public keys (pkenc,0, pkenc,1) and 
return pkenc := pkenc,0  in the response to A.  At the time A issues a Pour query that results in the i-
th ciphertext Ci being encrypted under pkenc, query the IK-CCA challenger on the corresponding 

plaintext m and receive C∗ = Eenc(pkenc,b̄, m) where b̄ is the bit chosen by the IK-CCA challenger. 

Substitute Ci := C∗ and write the resulting txPour to the Ledger. When A outputs bJ we return 

this guess as our guess in the IK-CCA experiment.  We note that when b̄ = 0 then A’s view of the 

interaction  is  distributed  identically  to  that  of  31,  and  when b̄  is  1  then  A’s  view  represents  an 
intermediate hybrid where one key has been substituted. By a standard hybrid argument over each 
of  the  2   qP  ciphertexts,  we  note  that  over  the  random  coins  of  the  experiment,  our  solver  must 
succeed in the IK-CCA experiment with advantage        є  .  If we assume a maximum adversarial 

2·qP 

advantage AdvEnc against the IK-CCA experiment for the encryption scheme, then we get that 
H 32 Enc 

P 

Next, we discuss 32 and H; the argument is similar to the above one.  This time, rather than 
replacing the key used to encrypt, we replace the plaintext with a random message drawn from 
the plaintext space; this final distribution is the same as in 32.  We omit the formal description of 
the resulting IND-CCA solver (which essentially follows the pattern above), and simply note that 
.Adv    − Adv  . ≤ 2 · qP · Adv    . 

Lemma D.2. Let AdvPRF be A’s advantage in distinguishing the pseudorandom function PRF from 
a random function.  Then, after qCA  CreateAddress queries, |Adv33   − Adv32 | ≤ qCA · AdvPRF. 

Proof sketch. We first describe a hybrid H, intermediate between 32 and 33, in which all values 
computed using the first (rather than all) oracle-generated key ask are replaced with random strings. 

Then, we show that A’s advantage in distinguishing between H and 32 is at most AdvPRF. Finally, 
we extend the argument to all qCA  oracle-generated keys (corresponding to what happens in 33). 

We now describe H. On receiving A’s first CreateAddress query, replace the public address 
addrpk = (apk, pkenc) with addrpk = (τ, pkenc) where τ is a random string of the appropriate length. 

On each subsequent Pour query, for each i ∈ {1, 2}, if addrold = addrpk then: 
1. in the output txPour, replace snold with a random string of appropriate length; 
2. in the output txPour, replace each of h1, h2 with a random string of appropriate length. 
3. simulate the zk-SNARK proof πPOUR for the new transaction. 

Note that the above modifications do not affect the computation of the zk-SNARK proof πPOUR, 
because πPOUR is simulated with the help of a trapdoor. 

We now argue that A’s advantage in distinguishing between H and 32 is at most AdvPRF. Let ask 
be the random, secret seed for PRF generated by the oracle in answering the first CreateAddress 
query. In 32 (as in 3real): 

• apk := PRFask    
(0); 

• for each i ∈ {1, 2}, sni := PRFask 
(ρ) for a random (and not previously used) ρ 
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• for each i ∈ {1, 2}, hi := PRFask 
(iǁhSig) and, with overwhelming probability, hSig is unique. 

Moreover, each of PRFaddr, PRFsn , PRFpk  are constructed from PRFa as specified in Section 4.1. 
ask ask ask sk 

Note that, with overwhelming probability, no two calls to PRFask   are made on the same input. First, 
even identical inputs passed to PRFaddr, PRFsn , PRFpk  produce different underlying calls to PRFa  . 

ask ask ask sk 

Second, within each construction, there is exactly one call to PRFaddr, and the calls to PRFsn are 
ask ask 

each by definition unique. Finally, with overwhelming probability, the calls to PRFpk from different 
transactions each reference a distinct digest hSig, and, within a given transaction, the two calls each 
begin with a distinct prefix. 

Now let O be an oracle that implements either PRFask or a random function. We show that if 

A distinguishes H from 32 with probability ϵ, then we can construct a distinguisher for the two 
cases of O. In either case we use O to generate all values computed using PRFaddr, PRFsn , PRFpk . 
Clearly, when O implements PRFask , the distribution of the experiment is identical to 32; instead, 
when implements a random function, the distribution of the experiment is identical to H. Thus, 

PRF 

A’s advantage is at most Adv . 
Finally,  by  a  standard  hybrid  argument,  we  extend  the  above  to  all  qCA  oracle-generated 

addresses; then, A’s differential distinguishing advantage is at most qCA · AdvPRF.  Because this final 
hybrid is equal to 33, we deduce that |Adv33   − Adv32 | ≤ qCA · AdvPRF. 

Lemma D.3. Let AdvCOMM be A’s advantage against the hiding property of COMM. After qM 

Mint queries and qP  Pour queries, |Adv3sim  − Adv33 | ≤ (qM + 4 · qP) · AdvCOMM. 

Proof sketch. We only provide a short sketch, because the structure of the argument is similar to 
the one used to prove Lemma D.2 above. 

For the first Mint or Pour query, replace the “internal” commitment k := COMMr(apkǁρ) with 

a random string of the appropriate length. Since ρ is random (and unique), then A’s advantage 
in distinguishing this modified experiment from 32 is at most AdvCOMM. Then, if we similarly 

modify all qM  Mint queries and all qP  Pour queries, by replacing the resulting qM + 2 · qP  internal 

commitments with random strings, we can bound A’s advantage by (qM + 2 · qP) · AdvCOMM. 
Next, in a similar vein, if replace the coin commitment in the first Pour with a commitment to 

a random value, then   ’s advantage in distinguishing this modified experiment from the above one 
is at most AdvCOMM.  Then, if we similarly modify all qP  Pour queries, by replacing the resulting 

2 · qP  coin  commitments  with  random  strings,  we  obtain  the  experiment  3sim,  and  deduce  that 

|Adv3sim  − Adv33 | ≤ (qM + 4 · qP) · AdvCOMM. 

 

D.2 Proof of transaction non-malleability 

Letting T be the set of pour transactions generated by ODAP in response to Pour queries, recall 
that A wins the TR-NM experiment whenever it outputs tx∗ such that there exists txJ ∈ T such that: 
(i) tx∗ txJ; (ii) VerifyTransaction(pp, tx∗, LJ) = 1, where LJ is the portion of the ledger preceding 
txJ; and (iii) a serial number revealed in tx∗ is also revealed in txJ. Being a pour transaction, tx∗ 

has the form (rt, snold, snold, cmnew, cmnew, vpub, info, ∗), where ∗ := (pksig, h1, h2, πPOUR, C1, C2, σ); set 

hSig := CRH(pksig).  Let pks
J 
ig  be the corresponding public key in txJ  and set hS

J 
ig  := CRH(pkJ

sig). 

Define ϵ := AdvTR-NM(λ), and let QCA = {ask,1, . . . , ask,q } be the set of internal address keys 
created by C in response to A’s CreateAddress queries. Let QP = (pksig,1, . . . , pksig,qP 

) be the set 

of signature public keys created by C in response to A’s Pour queries. We decompose the event in 
which A wins into the following four disjoint events. 

• EVENTsig: A wins, and there is pkJ
s

J
ig ∈ QP such that pksig = pkJ

s
J
ig. 
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• EVENTcol:  A wins,  the  above  event  does  not  occur,  and  there  is  pks
JJ
ig  ∈ QP  such  that  hSig  = 

CRH(pkJ
s

J
ig). 

• EVENTmac: A wins, the above two events do not occur, and hi = PRFpk(iǁhSig) for some i ∈ {1, 2} 
and a ∈ QCA. 

• EVENTkey: A wins, the above three events do not occur, and hi 

and a ∈ QCA. 
PRFpk(iǁhSig) for all i ∈ {1, 2} 

Clearly, ϵ = Pr [ EVENTsig ] + Pr [ EVENTcol ] + Pr [ EVENTkey ] + Pr [ EVENTmac ]. Hence, to show 
that ϵ is negligible in λ, it suffices to argue that each of these probabilities is negligible in λ. 

Bounding  the  probability  of  Eventsig.   Define  ϵ1  := Pr [ EVENTsig ].   Let  σ  be  the  signature 
in tx∗, and σJJ be the signature in the first pour transaction txJJ ∈ T that contains pkJ

s
J
ig. When 

EVENTsig  occurs,  since  pksig  = pks
JJ
ig,  the  two  signatures  are  with  respect  to  the  same  public  key. 

Moreover, since tx∗ is valid,    sig(pksig, m, σ) = 1 where m is everything in tx∗ but for σ.  Let mJJ 
consist of all elements in txJJ  but for σJJ.  Observe that whenever tx∗  = txJJ  we also have (m, σ) 
= (mJJ, σJJ). We use this fact below to show that       forges a signature with non-negligible probability. 

First, we argue that, conditioned on EVENTsig, tx∗ = txJJ with overwhelming probability; we do 
so by way of contradiction. First, since     wins, by definition there is txJ such that tx∗ = txJ 
and yet each of tx∗ and txJ share one serial number. Therefore: (i) tx∗ = txJ; and (ii) if tx∗ = txJJ 
then txJJ and txJ also share a serial number. However the probability that txJ and txJJ share a serial 
number is bounded by the probability p̃  that      contains two transactions that share the same serial 
number.  Because each serial number is computed as PRFsn (ρ), where ρ is random, p̃  is negligible. 

We conclude that tx∗ /= txJJ with all but negligible probability. 

Next, we describe an algorithm B, which uses A as a subroutine, that wins the SUF-1CMA game 
against Sig with probability ϵ1/qP. After receiving a verification key pkJ

s
J
ig from the SUF-1CMA 

challenger, the algorithm B performs the following steps. 
1. B selects a random index j ← {1, . . . , qP}. 

2. B conducts the TR-NM experiment with A, except that, when A issues the j-th Pour query, 
B executes Pour as usual, but modifies the resulting pour transaction txJJ as follows: (i) it 
substitutes pks

JJ
ig  for the signature public key in txJJ; (ii) it queries the SUF-1CMA challenger to 

obtain σJJ on the appropriate message mJJ; and (iii) it substitutes σJJ for the signature in txJJ. 
3. When A outputs tx∗, B looks into tx∗ to obtain pksig, m, and σ. 

4. If pksig  /= pks
JJ
ig  then B aborts; otherwise B outputs (m, σ) as a forgery for Sig. 

Note that tx has the same distribution has an “untampered” pour transaction; thus, all transactions 

returned to A are distributed as in the TR-NM experiment. Since the index j is selected at random, 

B succeeds in the experiment with probability at least ϵ1/qP. Because Sig is SUF-1CMA, ϵ1 must 
be negligible in λ. 

Bounding  the  probability  of  Eventcol.     Define  ϵ2  := Pr [ EVENTcol ].   When  EVENTcol  occurs, 
A receives a transaction txJ containing a public key pkJ

s
J
ig, and subsequently outputs a transaction 

tx∗  containing  a  public  key  pksig  such  that  (i)  pksig  /= pks
JJ
ig,  but  (ii)  CRH(pksig) = CRH(pkJ

sig).  In 

particular, A finds collisions for CRH with probability ϵ2. Because CRH is collision resistant, ϵ2 
must be negligible in λ. 

Bounding the probability of Eventmac. Define ϵ3 := Pr [ EVENTmac ]. We first define an exper- 

iment 31, which modifies the TR-NM experiment as follows. When C samples pp ← Setup(1λ), the sub-
call to (pkPOUR, vkPOUR) ← KeyGen(1λ, CPOUR) is replaced by (pkPOUR, vkPOUR, trap) ← Sim(1λ, CPOUR), so to 

obtain the zero-knowledge trapdoor trap. Afterwards, each time A issues a Pour query, C replaces 
the zk-SNARK proof in the resulting pour transaction with a simulated proof, obtained by running 
Sim(trap, x) for an appropriate input x. Because the zk-SNARK is perfect zero knowledge, Pr [ 
EVENTmac ] = ϵ3 in the 31 experiment as well. 
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ask,j 

ask,j 

a 

ask,j 

ask,j 

Clear.ly,   2
−ω  is  negligib le;  mo reover,  if  ϵ3  is  n o.n-negligible,  then  so  is  |ϵ3/qCA|.   Thus,  to  show 

BRAND(1λ) aborts BPRF (1λ) aborts 

Assume by way of contradiction that ϵ3 is non-negligible. We now show how to construct an 

attacker B, which uses A as a subroutine, that distinguishes PRF from a random function RAND 

with non-negligible probability. The algorithm B, which has access either to O = PRF or O = RAND, 

“interfaces” between A and C in the experiment 31 above, as follows. 
1. First, B selects a random index j ← {1, . . . , qCA}, which identifies ask,j  ∈ QCA. 
2. Next, B uses the oracle O instead of PRFask,j , i.e., anytime a value needs to be computed 

depending on PRFask,j (z), for some z, O(z) is used instead.  (For instance, the public address 
key apk,j is one such value.) 

3. Finally, after A outputs tx∗: 

(a) if O has been previously evaluated the expression “PRFpk  (iǁhSig)” using O, B aborts 
and outputs 1; 

(b) otherwise, B evaluates the expression “PRFpk (iǁhSig)” by using O; if the result equals 
hi, B outputs 1, else it outputs 0. 

Conducting the above strategy does not require knowledge of ask,j because, having the simulation 
trapdoor, B does not ne.ed  witnesses to gen erate  (valid) zk-SNAR K.  proofs. 

We now argue that .Pr  BPRF (1λ) = 1   − Pr   BRAND(1λ) = 1  . is non-negligible. 

• Case 1: O = RAND. Observe that: 

Pr 
h 

BRAND(1λ) = 1 | BRAND(1λ) does not abort 
i 

= 2−ω . 

where ω is the output length of PRF. Hence: 

Pr 
h 

BRAND(1λ) = 1 
i 

= 
  

1 − Pr 
h 

BRAND(1λ) aborts 
i  

· 2−ω + Pr 
h 

BRAND(1λ) aborts 
i
. 

• Case 2:  O = PRF.  In this case the distribution of the simulation is identical to that of 31, and B 
has set ask,j equal to the seed used by O. Recall that, when EVENTmac holds, hi = PRFpk(iǁhSig) 
for some a ∈ QCA. Since A’s view of the experiment is independent of j, the probability that 

a = ask,j is at least 1/qCA, and the probability that hi = PRFpk (iǁhSig) is at least ϵ3/qCA. 
Hence: 

 
 
 

Thus: 

Pr 
h 

BPRF (1λ) = 1 | BPRF (1λ) does not abort 
i 

= ϵ3/qCA  . 

Pr 
h 

BPRF (1λ) = 1 
i 

= 
  

1 − Pr 
h 

BPRF (1λ) aborts 
i  

· ϵ3/qCA + Pr 
h 

BPRF (1λ) aborts 
i
. 

 
 

tha t 
.Pr   BPRF (1λ) = 1 − Pr   B

RAND(1λ) = 1  . is non-negligible, it suffices to show that each of 

To do so,  recall that B aborts if and only if it has previously evaluated the expression 
pk 
ask,j (iǁhSig)” using O prior to receiving A’s output.  First note that B’s only calls to O occur 

when it evaluates the functions  PRFaddr, PRFsn  and PRFpk.   Moreover,  due to the construction 

of these functions it is not possible to evaluate the expression PRFpk   (iǁhSig) using any calls to 

PRFaddr or PRFsn. Thus B aborts if and only if it has previously queried PRFpk on the expression 
pk 
ask,j (iǁhSig). However it is easy to see that this cannot happen under the conditions of EVENTmac, 

since such a query would imply the condition EVENTsig or EVENTcol, each of which is excluded by 
EVENTmac. Hence the probability of either condition occurring is 0. 

“PRF 

PRF 

Pr and Pr is negligible. 
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sn 

E 

i ∈ T 

sk,1 

i pk,i i i i i i 

sk,i sk,i enc,i 

sni = PRFask 
(ρ). If ask,i /= ask, output 

Note that, whenever EVENTkey holds: 
(ask,i, ρi    ), (ask, ρ) as a collision for PRF 

a
sk,1 a

sk,2 

1 2 sk,1 sk,2 1 2 

Bounding the probability of Eventkey. Define ϵ4 := Pr [ EVENTkey ], and let E be the zk-SNARK 
extractor for A. Assume by way of contradiction that ϵ4 is non-negligible. We construct an algorithm 

sn 

B that finds collisions for PRF with non-negligible probability (contradicting the fact that PRF 
is collision resistant). The algorithm B works as follows. 

1. Run A (simulating its interaction with the challenger C) to obtain tx∗. 
2. Run (pkPOUR, vkPOUR) to obtain a witness a for the zk-SNARK proof πPOUR in tx∗. 
3. If a is not a valid witness for the instance x := (rt, snold, snold, cmnew, cmnew, vpub, hSig, h1, h2), 

abort and output 0. 
1 2 1 2 

4. Parse a as (path1, path2, cold, cold, addrold , addrold , cnew, cnew). 
1 2 sk,1 sk,2 1 2 

5. For each i ∈ {1, 2}, parse cold as (addrold , vold, ρold, rold, sold, cmold). 

6. For each i ∈ {1, 2}, parse addrold as (aold , skold ). 
(Note that, since a is a valid witness, snold = PRFsn 

 

 
(ρold) for all i ∈ {1, 2}.) 

7. For each i ∈ {1, 2}: 
i old i sk,i 

(a) Look for a pour transaction tx that contains snold. 
(b) If one tx is found, let ask and ρ be the seed and input used to compute snold in tx; thus, 

old sn   old old 
i 

old sn 

 

• the proof πPOUR is valid and, with all but negligible probability, the witness a is valid; 
• the serial number snold or snold appears in some previous pour transaction in T ; 

1 2 pk pk 

• whenever a is valid, it holds that h1 = PRF old (hSig) and h2 = PRF old (hSig), so that it cannot 

be that aold old 
sk,2 = ask (as this contradicts the conditions of the event EVENTkey). 

Overall, we conclude that B finds a collision for PRFsn with probability ϵ4 − negl(λ). 

D.3 Proof of balance 

Define ϵ := AdvBAL(λ); our goal is to show that ϵ is negligible in λ. Recall that ADDR is the set of 
Π,A 

addresses returned by A’s CreateAddress queries. 

Augmenting the ledger with witnesses.   We modify the BAL experiment in a way that does 

not affect A’s view: the challenger C computes, for each pour transaction txPour on the ledger L 
(maintained by the oracle ODAP), a witness a = (path1, path2, cold, cold, addrold , addrold , cnew, cnew) 
for  the  zk-SNARK  instance  x  =  (rt, snold, snold, cmnew, cmnew, vpub, hSig, h1, h2)  corresponding  to 

1 2 1 2 

txPour.29  In this way, C obtains an augmented  ledger  (L, →a), where ai  is a witness for the zk-SNARK 
instance  xi  of  the  i-th  pour  transaction  in  L.  Note  that  we  can  parse  (L, →a)  as  a  list  of  matched 
pairs (txPour, a) where txPour is a pour transaction in L and a is its corresponding witness. 

The discussion below is relative to the above modification of the BAL experiment. 

Balanced  ledgers.    We say that an augmented ledger (L, →a) is balanced  if the following holds. 

I. Each (txPour, a) in (L, →a) contains openings (i.e.,  decommitments) of two distinct coin com- 
mitments cmold and cmold; also, each cmold is the output coin commitment of a pour or mint 

1 2 i 
transaction that precedes txPour on L. 

II. No two (txPour, a) and (aJ, txJ
Pour) in (L, →a) contain openings of the same coin commitment. 

29  Concretely, for pour transactions in L not inserted by A, C  simply retains the witness a internally used by ODAP 

to generate the transaction. As for the (valid) pour transactions inserted by A, C uses the zk-SNARK multi-instance 
knowledge extractor corresponding to A; see Section 2.1. (If knowledge extraction fails, C aborts and outputs 1. 
However, this only happens with negligible probability.) 

a 

= a 

. 
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i 

A ∈ { } 

a 

i 

/ 

1 2 i 

1 2 i 

old 
sk,i 

i sk,1 1 sk,2 2 

1 2 1 2 

III. Each  (txPour, a)  in  (L, →a)  contains  openings  of  cmold, cmold, cmnew, cmnew  to  values  vold, vold, 
1 2 1 2 1 2 

vnew, vnew (respectively), with the condition that vold + vold = vnew + vnew + vpub. 
1 2 1 2 1 2 

IV. For each (txPour, a) in (L, →a) and for each i ∈ {1, 2}, the following conditions hold: 

(a) If cmold is also the output of a mint transaction txMint on L, then the public value v in 
txMint is equal to vold. 

(b) If cmold is also the output of a pour transaction txJ on L, then its witness aJ contains 
i Pour 

an opening of cmold to a value vJ that is equal to vold. 
i i 

V. For each (txPour, a) in (L, →a), where txPour was inserted by     , it holds that, for each i        1, 2  , 
if cmold is the output of an earlier mint or pour transaction txJ, then the public address of the 
i-th output of txJ is not contained in ADDR. 

Intuitively, the above conditions ensure that, in L, A did not spend money that was not previously 

minted, or paid to an address under A’s control. Concretely, one can prove by induction that if 
(L, →a) is balanced then vUnspent + vBasecoin + vA→ADDR  > vMint + vADDR→A. 

In light of the above, it suffices to argue that the augmented ledger induced by the (modified) BAL 
experiment is balanced with all but negligible probability.  Suppose, by way of contradiction, that is 

is not the case:  A induces, with non-negligible probability, an augmented ledger (L, →a) that is not 
balanced. We distinguish between five cases, corresponding to which one of the above conditions 
does not hold with non-negligible probability. In each case, we show how to reach a contradiction, 
concluding the proof. 

A violates  Condition  I.  Suppose that Pr [ A wins but violates Condition I ] is non-negligible. 

By construction of ODAP, every (txPour, a) in (L, →a) for which txPour was not inserted by A satisfies 
Condition I; thus, the violation can only originate from a pair (txPour, a) in (L, →a) for which txPour 

was inserted by A and such that: (i) cmold = cmold; or (ii) there is i ∈ {1, 2} such that cmold has no 
corresponding output coin commitment in any pour or mint transaction that precedes txPour on L. 

Observe that the validity of txPour implies that: 

• The two serial numbers snold and snold are distinct. Moreover, recalling that each snold equals 
PRFsn (ρold), this also implies that (aold , ρold) (aold , ρold). 

• The witness a contains two valid authentication paths path1, path2 for a Merkle tree constructed 
using only coin commitments of transactions preceding txPour in L. 

In either (i) or (ii), we reach a contradiction. Indeed: 

(i) If  cmold  =  cmold,  then  the  fact  that  snold  =/ snold  implies  that  the  witness  a  contains  two 
distinct openings of cmold (the first opening contains (aold , ρold), while the second opening 

1 sk,1 1 
contains (aold , ρold)). This violates the binding property of the commitment scheme COMM. 

sk,2 2 

(ii) If there is i ∈ {1, 2} such that cmold does not previously appear in L, then pathi is an invalid 
authentication path, and thus yields a collision in the function CRH. This violates the collision 
resistance of CRH. 

A violates Condition II. Suppose that Pr [ A wins but violates Condition II ] is non-negligible. 
Observe that, when Condition II is violated, L contains two pour transactions txPour, txJ

Pour spending 

the same coin commitment cm, and revealing two serial numbers sn and snJ. Since txPour, txJ
Pour are 

valid, it must be the case that sn = snJ. However (as argued already above), if both transactions 
spend cm but produce different serial numbers, then the corresponding witnesses a, aJ contain 
different openings of cm. This contradicts the binding property of the commitment scheme COMM. 

A violates Condition III. Suppose that Pr [ A wins but violates Condition III ] is non-negligible. 
In this case, the contradiction is immediate:  whenever Condition III is violated, the equation 
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ask 

vold + vold = vnew + vnew + vpub does not hold, and thus, by construction of the statement POUR, the 
1 2 1 2 

soundness of the zk-SNARK is violated as well. 

A violates Condition IV. Suppose that Pr [ A wins but violates Condition IV ] is non-negligible. 
Observe that, when Condition IV is violated, L contains: 

• a pour transaction txPour in which a coin commitment cmold is opened to a value vold; and also 
• a (mint or pour) transaction txJ that opens cmold to a value vJ different from vold. 
This contradicts the binding property of the commitment scheme COMM. 

A violates Condition V. Suppose that Pr [ A wins but violates Condition V ] is non-negligible. 
Observe that, when Condition V is violated, L contains an inserted pour transaction txPour that 
spends the output of a previous transaction txJ whose public address addrpk = (apk, pkenc) lies in 
ADDR; moreover, the witness associated to txJ contains ask such that apk = PRFaddr(0). We omit 

the full argument, but one can verify that, in this case, we can construct a new adversary B that 

uses A to distinguish, with non-negligible probability, PRF from a random function. 



54  

References 

[BB04]  Dan Boneh and Xavier Boyen. Secure identity based encryption without random oracles. In Proceedings 
of the 24th Annual International Cryptology Conference, CRYPTO ’04, pages 443–459, 2004. 

[BBDP01]    Mihir Bellare,  Alexandra Boldyreva,  Anand Desai,  and David Pointcheval.   Key-privacy in public- 
key encryption. In Proceedings of the 7th International Conference on the Theory and Application of  
Cryptology and Information Security, ASIACRYPT ’01, pages 566–582, 2001. 

[BBSU12] Simon Barber, Xavier  Boyen,  Elaine  Shi,  and  Ersin  Uzun.  Bitter  to better -  how to  make Bitcoin a 
better currency. In Proceedings of the 16th International Conference on Financial Cryptography and Data 
Security, FC ’12, pages 399–414, 2012. 

[BCCT12] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From extractable collision resistance to  
succinct non-interactive arguments of knowledge, and back again. In Proceedings of the 3rd Innovations 
in Theoretical Computer Science Conference, ITCS ’12, pages 326–349, 2012. 

[BCCT13] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive composition and bootstrapping 
for SNARKs and proof-carrying data. In Proceedings of the 45th ACM Symposium on the Theory of 
Computing, STOC ’13, pages 111–120, 2013. 

[BCG+13]    Eli Ben-Sasson,  Alessandro  Chiesa,  Daniel Genkin,  Eran Tromer,  and Madars  Virza.   SNARKs for 
C: verifying program executions succinctly and in zero knowledge. In Proceedings of the 33rd Annual 
International Cryptology Conference, CRYPTO ’13, pages 90–108, 2013. 

[BCGT13a] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, and Eran Tromer. Fast reductions from RAMs to 
delegatable succinct constraint satisfaction problems. In Proceedings of the 4th Innovations in Theoretical 
Computer Science Conference, ITCS ’13, pages 401–414, 2013. 

[BCGT13b]  Eli  Ben-Sasson,  Alessandro  Chiesa,   Daniel  Genkin,   and  Eran  Tromer.   On  the  concrete  efficiency of 
probabilistically-checkable proofs. In Proceedings of the 45th ACM Symposium on the Theory of 
Computing, STOC ’13, pages 585–594, 2013. 

[BCI+13] Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer Paneth. Succinct non- 
interactive arguments via linear interactive proofs. In Proceedings of the 10th Theory of Cryptography 
Conference, TCC ’13, pages 315–333, 2013. 

[BCTV14] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Succinct non-interactive zero 
knowledge for a von Neumann architecture. In Proceedings of the 23rd USENIX Security Symposium, 
Security ’14, pages ???–???, 2014. Available at http://eprint.iacr.org/2013/879. 

[Bel06]  Mihir Bellare. New proofs for NMAC and HMAC: security without collision-resistance. In Proceedings of 
the 26th Annual International Conference on Advances in Cryptology , CRYPTO ’06, pages 602–619, 2006. 

[Ben13] Eli Ben-Sasson. Universal and affordable computational integrity, May 2013. Bitcoin 2013:  The Future 
of Payments. URL: http://www.youtube.com/watch?v=YRcPReUpkcU&feature=youtu.be&t=26m6s. 

[BFLS91]       László Babai,  Lance  Fortnow,  Leonid  A.  Levin,  and  Mario  Szegedy.  Checking  computations  in  polyloga- 
rithmic time. In Proceedings of the 23rd Annual ACM Symposium on Theory of Computing, STOC ’91, 
pages 21–32, 1991. 

[BGH+05] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil Vadhan. Short PCPs 
verifiable in polylogarithmic time. In Proceedings of the 20th Annual IEEE Conference on Computational  
Complexity, CCC ’05, pages 120–134, 2005. 

[Cer00] Certicom Research. SEC 1: Elliptic curve cryptography, 2000. URL: http://www.secg.org/collateral/ 
sec1_final.pdf. 

[Cha82] David Chaum. Blind signatures for untraceable payments. In Proceedings of the 2nd Annual International 
Cryptology Conference, CRYPTO ’82, pages 199–203, 1982. 

[CHL05] Jan Camenisch, Susan Hohenberger, and Anna Lysyanskaya. Compact e-cash. In Proceedings of the 24th 
Annual International Conference on Theory and Applications of Cryptographic Techniques , EUROCRYPT 
’05, pages 302–321, 2005. 

[CL01]  Jan Camenisch and Anna Lysyanskaya. An efficient system for non-transferable anonymous credentials 
with optional anonymity revocation. In Proceedings of the 20th Annual International Conference on 
Theory and Application of Cryptographic Techniques, EUROCRYPT ’01, pages 93–118, 2001. 

[DDM03] George Danezis, Roger Dingledine, and Nick Mathewson. Mixminion: Design of a type III anonymous 
remailer protocol. In Proceedings of the 2003 IEEE Symposium on Security and Privacy, SP ’03, pages 2–
15, 2003. 

http://eprint.iacr.org/2013/879
http://www.youtube.com/watch?v=YRcPReUpkcU&feature=youtu.be&t=26m6s
http://www.secg.org/collateral/sec1_final.pdf
http://www.secg.org/collateral/sec1_final.pdf


55  

[DFKP13] George Danezis, Cedric Fournet, Markulf Kohlweiss, and Bryan Parno. Pinocchio Coin:  building Zerocoin 
from a succinct pairing-based proof system. In Proceedings of the 2013 Workshop on Language Support 
for Privacy Enhancing Technologies, PETShop ’13, 2013. URL: http://www0.cs.ucl.ac.uk/staff/G. 
Danezis/papers/DanezisFournetKohlweissParno13.pdf. 

[DMS04] Roger Dingledine, Nick Mathewson, and Paul Syverson.  Tor:  the second-generation onion router.  In 
Proceedings of the 13th USENIX Security Symposium, Security ’04, pages 21–21, 2004. 

[DW13]  Christian Decker and Roger Wattenhofer. Information propagation in the Bitcoin network. In Proceedings 
of the 13th IEEE International Conference on Peer-to-Peer Computing, P2P ’13, pages 1–10, 2013. 

[ES13] Ittay  Eyal  and  Emin  Gün  Sirer.  Majority  is  not  enough:  Bitcoin  mining  is  vulnerable,  2013. 

[Gen04]   Rosario Gennaro.  Multi-trapdoor commitments and their applications to proofs of knowledge secure 
under concurrent man-in-the-middle attacks. In Proceedings of the 24th Annual International Cryptology 
Conference, CRYPTO ’04, pages 220–236, 2004. 

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span programs and 
succinct NIZKs without PCPs. In Proceedings of the 32nd Annual International Conference on Theory 
and Application of Cryptographic Techniques, EUROCRYPT ’13, pages 626–645, 2013. 

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive proof 
systems. SIAM Journal on Computing, 18(1):186–208, 1989. Preliminary version appeared in STOC ’85. 

[GOS06a] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Non-interactive Zaps and new techniques for NIZK. In 
Proceedings of the 26th Annual International Conference on Advances in Cryptology , CRYPTO ’06, pages 
97–111, 2006. 

[GOS06b] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-interactive zero knowledge for NP. In 
Proceedings of the 25th Annual International Conference on Advances in Cryptology, EUROCRYPT ’06, 
pages 339–358, 2006. 

[Gro10]  Jens Groth.   Short pairing-based non-interactive zero-knowledge arguments.   In Proceedings of the 
16th International Conference on the Theory and Application of Cryptology and Information Security , 
ASIACRYPT ’10, pages 321–340, 2010. 

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from all falsifiable 
assumptions. In Proceedings of the 43rd Annual ACM Symposium on Theory of Computing, STOC ’11, 
pages 99–108, 2011. 

[KL07] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography. Chapman & Hall/CRC, 2007. 

[Lee13] Timothy B. Lee. Bitcoin needs to scale by a factor of 1000 to compete with Visa. here’s how to do it. 

The Washington Post (http://www.washingtonpost.com), November 2013. 

[Lip12] Helger Lipmaa. Progression-free sets and sublinear pairing-based non-interactive zero-knowledge argu- 
ments. In Proceedings of the 9th Theory of Cryptography Conference on Theory of Cryptography, TCC ’12, 
pages 169–189, 2012. 

[Lip13]  Helger Lipmaa. Succinct non-interactive zero knowledge arguments from span programs and linear 
error-correcting codes. In Proceedings of the 19th International Conference on the Theory and Application 
of Cryptology and Information Security, ASIACRYPT ’13, pages 41–60, 2013. 

[Max13]       Greg Maxwell.  CoinJoin:  Bitcoin privacy for the real world, August 2013.  Bitcoin Forum.  URL: 
https://bitcointalk.org/index.php?topic=279249.0. 

[MGGR13] Ian Miers, Christina Garman, Matthew Green, and Aviel D. Rubin. Zerocoin: Anonymous distributed e-
cash from bitcoin. In Proceedings of the 2013 IEEE Symposium on Security and Privacy, SP ’13, pages 
397–411, 2013. 

[Mic00] Silvio Micali.   Computationally sound proofs.   SIAM Journal on Computing, 30(4):1253–1298,  2000. 
Preliminary version appeared in FOCS ’94. 

[MPJ+13] Sarah Meiklejohn, Marjori Pomarole, Grant Jordan, Kirill  Levchenko,  Damon  McCoy,  Geoffrey  M. 
Voelker, and Stefan Savage. A fistful of Bitcoins: Characterizing payments among men with no names. In 
Proceedings of the 2013 Conference on Internet Measurement Conference, IMC ’13, pages 127–140, 2013. 

[Nak09]  Satoshi Nakamoto. Bitcoin: a peer-to-peer electronic cash system, 2009. URL: http://www.bitcoin. 
org/bitcoin.pdf. 

[Nat12] National Institute of Standards and Technology.   FIPS PUB 180-4:  Secure Hash Standard.   http: 
//csrc.nist.gov/publications/PubsFIPS.html,  2012. 

http://www0.cs.ucl.ac.uk/staff/G.Danezis/papers/DanezisFournetKohlweissParno13.pdf
http://www0.cs.ucl.ac.uk/staff/G.Danezis/papers/DanezisFournetKohlweissParno13.pdf
http://www.washingtonpost.com/
https://bitcointalk.org/index.php?topic=279249.0
http://www.bitcoin.org/bitcoin.pdf
http://www.bitcoin.org/bitcoin.pdf
http://csrc.nist.gov/publications/PubsFIPS.html
http://csrc.nist.gov/publications/PubsFIPS.html


56  

[PGHR13] Bryan Parno, Craig Gentry, Jon Howell, and Mariana Raykova. Pinocchio: nearly practical verifiable 
computation. In Proceedings of the 34th IEEE Symposium on Security and Privacy, Oakland ’13, pages 
238–252, 2013. 

[Pol13] PolarSSL.   PolarSSL.   http://polarssl.org,  Oct  2013. 

[RM11]  Fergal Reid and Harrigan Martin. An analysis of anonymity in the Bitcoin system. In Proceedings of 
the 3rd IEEE International Conference on Privacy, Security, Risk and Trust and on Social Computing , 
SocialCom/PASSAT ’11, pages 1318–1326, 2011. 

[RS12] Dorit Ron and Adi Shamir. Quantitative analysis of the full Bitcoin transaction graph. Cryptology 
ePrint Archive, Report 2012/584, 2012. 

[ST99]  Tomas Sander and Amnon Ta-Shma. Auditable, anonymous electronic cash. In Proceedings of the 19th 
Annual International Cryptology Conference on Advances in Cryptology, CRYPTO ’99, pages 555–572, 
1999. 

[Val08] Paul Valiant. Incrementally verifiable computation or proofs of knowledge imply time/space efficiency. 
In Proceedings of the 5th Theory of Cryptography Conference, TCC ’08, pages 1–18, 2008. 

[Wui14] Pieter Wuille. Proposed BIP for dealing with malleability. Available at https://gist.github.com/ 
sipa/8907691, 2014. 

http://polarssl.org/
https://gist.github.com/sipa/8907691
https://gist.github.com/sipa/8907691

	Eli Ben-Sasson∗  Alessandro Chiesa† Christina Garman‡ Matthew Green‡ Ian Miers‡ Eran Tromer§ Madars Virza†
	May 18, 2014
	1 Introduction
	1.1 zk-SNARKs
	1.2 Centralized anonymous payment systems
	1.3 Decentralized anonymous payment schemes
	1.4 Zero
	1.5 Paper  organization

	2 Background on zk-SNARKs
	2.1 Informal definition
	2.2 Comparison with NIZKs
	2.3 Known constructions and security
	2.4 zk-SNARK  implementations

	3 Definition of a decentralized anonymous payment scheme
	3.1 Data structures
	3.2 Algorithms
	3.3 Completeness
	3.4 Security

	4 Construction of a decentralized anonymous payment scheme
	4.1 Cryptographic building blocks
	4.2 zk-SNARKs for pouring coins
	4.3 Algorithm  constructions
	4.4 Completeness and security

	5 Zero
	5.1 Instantiation of building blocks
	5.2 Arithmetic circuit for pouring coins
	5.2.1 An arithmetic circuit for verifying SHA256’s compression function
	5.2.2 Arithmetic  circuit  for  POUR


	6 Integration with existing ledger-based currencies
	6.1 Integration by replacing the base currency
	6.2 Integration by hybrid currency
	6.3 Extending the Bitcoin protocol to support the combined semantics
	6.4 Additional anonymity considerations

	7 Experiments
	7.1 Performance of zk-SNARKs for pouring coins
	7.2 Performance of Zero algorithms
	7.3 Large-scale network simulation

	8 Optimizations and extensions
	8.1 Everlasting anonymity
	8.2 Fast block propagation
	8.3 Improved storage requirements
	8.3.1 Supporting many coin commitments
	8.3.2 Supporting many spent serial numbers


	9 Concurrent work
	10 Conclusion
	Acknowledgments
	A Overview of Bitcoin and Zerocoin
	A.1 Bitcoin
	A.2 Zerocoin

	B Completeness of DAP schemes
	C Security of DAP schemes
	C.1 Ledger indistinguishability
	C.2 Transaction  non-malleability
	C.3 Balance

	D Proof of Theorem 4.1
	D.1 Proof of ledger indistinguishability

	References

